

Candidate features for future
OpenGL 5 / Direct3D 12 hardware

and beyond
3 May 2014, Christophe Riccio

G-Truc Creation

mailto:mail@g-truc.net
mailto:mail@g-truc.net
mailto:mail@g-truc.net
http://www.g-truc.net/
http://www.g-truc.net/
http://www.g-truc.net/
http://www.g-truc.net/
http://www.g-truc.net/

Table of contents

TABLE OF CONTENTS 2

INTRODUCTION 4

1. DRAW SUBMISSION 6

1.1. GL_ARB_MULTI_DRAW_INDIRECT 6
1.2. GL_ARB_SHADER_DRAW_PARAMETERS 7
1.3. GL_ARB_INDIRECT_PARAMETERS 8
1.4. A SHADER CODE PATH PER DRAW IN A MULTI DRAW 8
1.5. SHADER INDEXED LOSE STATES 9
1.6. GL_NV_BINDLESS_MULTI_DRAW_INDIRECT 10
1.7. GL_AMD_INTERLEAVED_ELEMENTS 10

2. RESOURCES 11

2.1. GL_ARB_BINDLESS_TEXTURE 11
2.2. GL_NV_SHADER_BUFFER_LOAD AND GL_NV_SHADER_BUFFER_STORE 11
2.3. GL_ARB_SPARSE_TEXTURE 12
2.4. GL_AMD_SPARSE_TEXTURE 12
2.5. GL_AMD_SPARSE_TEXTURE_POOL 13
2.6. SEAMLESS TEXTURE STITCHING 13
2.7. 3D MEMORY LAYOUT FOR SPARSE 3D TEXTURES 13
2.8. SPARSE BUFFER 14
2.9. GL_KHR_TEXTURE_COMPRESSION_ASTC 14
2.10. GL_INTEL_MAP_TEXTURE 14
2.11. GL_ARB_SEAMLESS_CUBEMAP_PER_TEXTURE 15
2.12. DMA ENGINES 15
2.13. UNIFIED MEMORY 16

3. SHADER OPERATIONS 17

3.1. GL_ARB_SHADER_GROUP_VOTE 17
3.2. GL_NV_SHADER_THREAD_GROUP 17
3.3. GL_NV_SHADER_THREAD_SHUFFLE 17
3.4. GL_NV_SHADER_ATOMIC_FLOAT 18
3.5. GL_AMD_SHADER_ATOMIC_COUNTER_OPS 18
3.6. GL_ARB_COMPUTE_VARIABLE_GROUP_SIZE 18
3.7. MULTI COMPUTE DISPATCH 19
3.8. GL_NV_GPU_SHADER5 19
3.9. GL_AMD_GPU_SHADER_INT64 20
3.10. GL_AMD_GCN_SHADER 20
3.11. GL_NV_VERTEX_ATTRIB_INTEGER_64BIT 21
3.12. GL_AMD_ SHADER_TRINARY_MINMAX 21

4. FRAMEBUFFER 22

4.1. GL_AMD_SAMPLE_POSITIONS 22

4.2. GL_EXT_FRAMEBUFFER_MULTISAMPLE_BLIT_SCALED 22
4.3. GL_NV_MULTISAMPLE_COVERAGE AND GL_NV_FRAMEBUFFER_MULTISAMPLE_COVERAGE 22
4.4. GL_AMD_DEPTH_CLAMP_SEPARATE 22

5. BLENDING 23

5.1. GL_NV_TEXTURE_BARRIER 23
5.2. GL_EXT_SHADER_FRAMEBUFFER_FETCH (OPENGL ES) 23
5.3. GL_ARM_SHADER_FRAMEBUFFER_FETCH (OPENGL ES) 23
5.4. GL_ARM_SHADER_FRAMEBUFFER_FETCH_DEPTH_STENCIL (OPENGL ES) 23
5.5. GL_EXT_PIXEL_LOCAL_STORAGE (OPENGL ES) 24
5.6. TILE SHADING 25
5.7. GL_INTEL_FRAGMENT_SHADER_ORDERING 26
5.8. GL_KHR_BLEND_EQUATION_ADVANCED 26
5.9. GL_AMD_BLEND_MINMAX_FACTOR 27

6. STENCIL 28

6.1. GL_AMD_SHADER_STENCIL_EXPORT 28
6.2. GL_AMD_STENCIL_OPERATION_EXTENDED 28
6.3. GL_AMD_SHADER_STENCIL_VALUE_EXPORT 28

7. RENDERING PIPELINE 29

7.1. GL_INTEL_CONSERVATIVE_RASTERIZATION 29
7.2. GL_AMD_VERTEX_SHADER_LAYER 29
7.3. GL_AMD_VERTEX_SHADER_VIEWPORT_INDEX 30
7.4. GL_AMD_TRANSFORM_FEEDBACK3_LINES_TRIANGLES 30
7.5. GL_AMD_TRANSFORM_FEEDBACK4 30
7.6. GL_AMD_OCCLUSION_QUERY_EVENT 30
7.7. WGL_AMD_GPU_ASSOCIATION AND WGL_NV_GPU_AFFINITY 31

8. HARDWARE RINGS AND TASKS PARALLELISM 32

CONCLUSIONS 33

REFERENCES 34

Introduction

The announcement of Mantle has triggered a lot of discussions about graphics API design. I think there
are technical issues in the OpenGL API but those are precise issues that need to be address individually
and following the GPU hardware designs.

Sadly, these API design discussions have hidden the actual major graphics APIs issues that are ecosystem
related in my opinion:

How to reliably solve cross compilation between shader languages?

Aras Pranckevičius is regularly discussing this issue on his blog as this remains a major headache. I
believe the approach followed by HLSLCrossCompiler is potentially the most reliable way to solve this
issue today but to my knowledge HLSLCrossCompiler hasn’t been battlefield tested yet.

How to debug and profile graphics code including shader languages?

NVIDIA has Nsight; Intel has GPA; AMD has CodeXL; each mobile vendor also has its things. Debugging
and profiling graphics code is a mess and the tools are not even good. Despite the fancy GUIs, I am still
relying on GLIntercept that is still doing the job best to this point for me: It’s reliable. Sadly, no Linux or
MacOS support. Thanks to Valve, there is new hope with VOGL which is taking the right directions: open
source and targetting Linux, Windows and MacOSX support. If IHVs really want to solve that problem, I
think allocating some engineering time on that project is the move forward.

How to scale shaders compilation?

Most engines work with the concept of shader variations: Each little shader feature comes with multiple
variations to support performance scalability and fallbacks. Combining all these little shader features
create a shader but the engine needs to generate shaders for each variation, performance level and
fallbacks. This quickly produce thousands of shaders with a significant compilation time making real time
editing of shaders only hypothetical in the near future. Furthermore, topics like Physically Based
Rendering might remove a lot of illegimate artist hand peaked edits but energy concervation is such a
complex issue that the number of variations will keep increasing.

How to get a good understanding of how GPUs work?

Some vendors like Intel and AMD have made an amazing contributing to the graphics community by
publishing their GPU specifications. NVIDIA has some documentation with the PTX ISA but it’s far from
exhaustive. For example, I still don’t understand how NVIDIA manage to support any indexing of
resources where other vendors only support dynamically uniform indexing. More importantly, I don’t
understand the concequences so it’s a dead feature to me. Mobile vendors are kind of making an effort
these days but it’s not nearly as good as it is needed especially considering how specific they are
compare with desktop GPUs. Finally, GPU specifications allow clearing out mythologies, pretty well
spread these days because of too many missleading API design discussions.

How to ensure that ecosystem platforms will get updated drivers?

How good is a new feature or a driver bug fix if the user doesn’t have the driver supporting these
improvements? Vendors are putting in place new driver notifications systems or the drivers get package

https://twitter.com/aras_p
http://aras-p.info/blog/2014/03/28/cross-platform-shaders-in-2014/
https://github.com/James-Jones/HLSLCrossCompiler
http://www.nvidia.com/object/nsight.html
https://software.intel.com/en-us/vcsource/tools/intel-gpa
http://developer.amd.com/tools-and-sdks/heterogeneous-computing/codexl/
https://code.google.com/p/glintercept/
https://github.com/ValveSoftware/vogl
https://01.org/linuxgraphics/documentation/2013-intel-core-processor-family
http://www.x.org/docs/AMD/
http://docs.nvidia.com/cuda/pdf/ptx_isa_4.0.pdf

with the OS updates. In practice, only OSX and iOS seems to really manage to keep their ecosystems up
to date.

How to get consistent performance level between ecosystem platforms?

This is particularly an issue with OpenGL where the ecosystem is really complex: On Windows, Linux or
Android, IHVs provide each the full software stacks. On MacOSX, Apple wrote most of the OpenGL
drivers. Furthermore, each vendor has a different level of quality and coverage of OpenGL leaving the
ecosytem particularly fragmented. Conscenquently, graphics engines are filled with arrays of flags for
supported features, workarounds and implementation bugs.

Why should we care about new graphics APIs? For an essential side of real time rendering evolution:
Exposing the new hardware features. The purpose of a graphics API is nothing but exposing the
hardware to the graphics programmers. If we use the OpenGL API with the GPU architectures in mind,
there is no reason to suffer of CPU overhead.

With Direct3D, Microsoft was able to drive the standardization of hardware features. Meanwhile, we
experienced structural changes in the ecosystem: Windows became just another platform; new consoles
are based on modern architecture; Valve announced the Steam Box on Linux; the mobile market
became relevant for every actors; WebGL transformed the web browsers into real-time rendering
platforms; etc. Furthermore, The Khronos Group became a force capable to resolve ecosystem issues
through hardware standardization. ASTC texture format gives a good example, with an expected support
on all future mobile and desktop GPUs.

The future of real-time graphics will pass by hardware standardization through a new hardware level
beyond the OpenGL 4 hardware level. What would be an OpenGL 5 hardware feature? Following the
conversions for OpenGL 3 and OpenGL 4, it's any hardware feature that can't be implemented on all
OpenGL 4 hardware but would be implementable on newer hardware by all IHVs.

In this article, we are looking at hardware features available through OpenGL extensions and possible
ideas that may or may not be standardize. We will have a particular focus on the two mains topics that
will drive future GPU designs in my opinion: Programmable vertex pulling and programmable blending.

 What are the vendor specific features currently supported?

 What are the current limitations?

 What are the possible future hardware directions?

http://gdcvault.com/play/1020791/
http://www.opengl.org/registry/specs/KHR/texture_compression_astc_hdr.txt

1. Draw submission

Draw submission has been a subject of API evolution since the very first version of OpenGL. With
OpenGL 1.0, it was done through the immediate mode using glBegin/glEnd. Quickly, it appeared that an
approach based on building and sending vertex one by one was way too slow to be efficient enough
because the GPUs were faster to consume the primitives than the CPU was able to submit them. A lot of
new features got introduced along the life of OpenGL to compensate this increasing GPU / CPU
performance ratio:

 Vertex Array (GL1.1);

 Vertex Buffer Object (GL1.5);

 Vertex Array Object (GL3.0);

 Base Vertex (GL3.2);

 Instancing (GL3.2);

 Instanced Arrays (GL3.3);

 Base Instance (GL4.2); and

 Vertex Attrib Binding (GL4.3)

OpenGL 4.3 took a new direction aiming at providing a magnitude of draw performances thanks to
ARB_multi_draw_indirect leading the way to Programmable Vertex Pulling. With this approach, the GPU
takes over the CPU responsible to dispatch the draws.

1.1. GL_ARB_multi_draw_indirect

By batching the data of multiple vertex array objects (VAOs) into a single VAO and calling
glDrawArraysInstancedBaseInstance or glDrawElementsInstancedBaseVertexBaseInstance many times in
a tight loop, we can archive extremely good performances with a very low CPU overhead. We can push
this concept further, by regrouping textures into texture arrays, by storing uniforms into buffers sorted
by update frequencies and indexing any resource used by a shader invocation in the tight loop.

However, the CPU remains in charge of submitting the draws and it needs to figure out which meshes
needs to be drawn for a specific frame. That operation alone can require an entire CPU core.

Thanks to ARB_multi_draw_indirect, the application can build a thinner OpenGL back-end by collecting
all the draws that need to be dispatched in a C++ array from many threads having no interaction with
the OpenGL API. Such array can be transfer to GPU memory to be read by the GPU command processor
that will schedule the draws for execution at a speed that the CPU is not likely to follow.

Furthermore, if multi core CPU performance is not enough, ARB_multi_draw_indirect can be coupled
with ARB_compute_shader to move the draw array generation processing from CPU to the GPU.
Effectively, the compute shader writes into a draw indirect buffer, storing the parameters for multiple
draw calls. This buffer is consumed by glMultiDrawElementsIndirect or glMultiDrawArraysIndirect.

The glMultiDraw*Indirect functions are nothing more than an evolution of the glDraw*Indirect
introduced with OpenGL 4.0. Instead of processing a single draw per draw call, the new functions can
submit many draws per calls.

glBindBuffer(GL_DRAW_INDIRECT_BUFFER, BufferName);

http://www.opengl.org/sdk/docs/man2/xhtml/glBegin.xml
http://www.opengl.org/sdk/docs/man2/xhtml/glEnd.xml
http://www.opengl.org/registry/specs/EXT/vertex_array.txt
http://www.opengl.org/registry/specs/ARB/vertex_buffer_object.txt
http://www.opengl.org/registry/specs/ARB/vertex_array_object.txt
http://www.opengl.org/registry/specs/ARB/draw_elements_base_vertex.txt
http://www.opengl.org/registry/specs/ARB/draw_instanced.txt
http://www.opengl.org/registry/specs/ARB/instanced_arrays.txt
http://www.opengl.org/registry/specs/ARB/base_instance.txt
http://www.opengl.org/registry/specs/ARB/vertex_attrib_binding.txt
http://www.opengl.org/registry/specs/ARB/multi_draw_indirect.txt
http://www.opengl.org/registry/specs/ARB/multi_draw_indirect.txt
http://www.opengl.org/sdk/docs/man4/xhtml/glDrawArraysInstancedBaseInstance.xml
http://www.opengl.org/sdk/docs/man4/xhtml/glDrawElementsInstancedBaseVertexBaseInstance.xml
http://www.opengl.org/registry/specs/ARB/multi_draw_indirect.txt
http://www.opengl.org/registry/specs/ARB/multi_draw_indirect.txt
http://www.opengl.org/registry/specs/ARB/compute_shader.txt
http://www.opengl.org/sdk/docs/man4/xhtml/glMultiDrawElementsIndirect.xml
http://www.opengl.org/sdk/docs/man4/xhtml/glMultiDrawArraysIndirect.xml

for(std::size_t DrawIndex = 0; DrawIndex < DrawCount; ++DrawIndex)
glDrawElementsIndirect(GL_TRIANGLES, GL_UNSIGNED_SHORT, BUFFER_OFFSET(Offset));

Listing 1.1.1: CPU draw dispatching in a tight loop

glBindBuffer(GL_DRAW_INDIRECT_BUFFER, BufferName);
glMultiDrawElementsIndirect(GL_TRIANGLES, GL_UNSIGNED_SHORT, nullptr, GLsizei(DrawCount), 0);

Listing 1.1.2: GPU draw dispatching by the command processor

Multi Draw Indirect is part of OpenGL 4.3 core specification but it's arguably an OpenGL 5 hardware
feature. This feature can be implemented through software emulation quite easily using the CPU to
push each individual draw but this is really slow. Currently, all the Intel GPUs and AMD Evergreen
support multi draw in software. Hardware implementations like AMD Southern Islands or NVIDIA Fermi
give another magnitude of performance. For example, Kepler can submit up to 800000 draws per frame
at 60Hz and Southern Islands can submit up to 300000 draws per frame on with a synthetic test
rendering 2 triangles per draw on 4 pixels. That huge amount of draws provides such an amazing control
over the rendering that not only the CPU overhead become insignificant but we can increase the GPU
processing efficiency by submitting many more thin draws reducing overdraw and unnecessary
processing of clipped primitives.

More details are given in GPU Pro 4 chapter “Introducing the Programmable Vertex Pulling Rendering
Pipeline” by Sean Lilley and I.

Current support: NVIDIA Fermi; AMD Evergreen (emulated), Southern Islands; Intel Haswell (emulated)
Expected support: All OpenGL 5 hardware

1.2. GL_ARB_shader_draw_parameters

This extension exposes three new built-in inputs to the vertex shader stage: gl_BaseIntanceARB,
gl_BaseVertexARB that exposes the values passed in the draw commands but also gl_DrawIDARB that
behaves for multi-draws just like gl_InstanceID behaves for draw instancing. A massive difference
between these new vertex shader inputs and gl_InstanceID is that there are dynamically uniform
variables so that we can use them to address arrays of resources.

layout(binding = INDIRECTION) uniform indirection {
int Transform[MAX_DRAW];

} Indirection;

layout(binding = TRANSFORM0) uniform transform {

mat4 MVP[MAX_DRAW];
} Transform;

layout(location = POSITION) in vec3 Position;
layout(location = TEXCOORD) in vec3 Texcoord;

out gl_PerVertex {

vec4 gl_Position;
};

out block {

vec2 Texcoord;
} Out;

void main(){

http://www.amazon.com/GPU-Pro-Advanced-Rendering-Techniques/dp/1466567430/ref=pd_sim_b_4?ie=UTF8&refRID=09PXANNDHPFHZ120P8M5
http://www.opengl.org/registry/specs/ARB/multi_draw_indirect.txt
http://www.opengl.org/sdk/docs/man/html/gl_InstanceID.xhtml
http://www.opengl.org/sdk/docs/man/html/gl_InstanceID.xhtml

Out.Texcoord = Texcoord.st;
gl_Position = Transform.MVP[Indirection.Transform[gl_DrawIDARB]] * vec4(Position, 1.0);

}

Listing 2.1.1: Use sample of gl_DrawIDARB to use a different matrix per draw in a multi draw call

With the perspective of programmable vertex pulling, we could imagine removing the Position and
Texcoord input variables and store them into a shader storage buffer; using gl_BaseVertexARB and
gl_VertexID to fetch ourselves the vertex data.

Reading the Southern Islands programming guide, we see that implementing such functionality means in
AMD architecture that the Constant Engine (a GPU block part of the command processor) has to write
the value of gl_DrawID into SH registers. It seems that such operation should not be a real issue as this is
already how BaseVertex and BaseInstance are passed to the vertex shader stage for the fetch shader. At
the very least exposing gl_BaseVertexARB or gl_BaseIntanceARB is trivial on Southern Islands
architecture. AMD has just release drivers supporting this extension so I haven’t been able to test it yet.

Surviving without gl_DrawID presents an alternative approach to gl_DrawID to perform per-draw
indexing of resources. Unfortunately, the presented technic based on BaseInstance and the divisor is
faster than gl_DrawID on NVIDIA hardware for the moment.

Current hardware support: NVIDIA Fermi, AMD Southern Islands
Expected hardware support: All OpenGL 5 hardware

1.3. GL_ARB_indirect_parameters

An issue of ARB_multi_draw_indirect is that it requires that we submit the number of draws from the
CPU side, as drawcount is a glMultiDrawElementsIndirect parameter. What if we use a compute shader
to build the indirect multi-draw buffer? We need to query on the CPU side the number of draws stored
in that buffer to feed the drawcount parameter: Very inefficient because we may stall the CPU waiting
on the query result. Another workaround is to reserve a large buffer of drawcount elements and set to
zero the primitive counts of each draw we want to skip. Unfortunately, according to my measurements,
that solution is inefficient because GPUs are barely faster at skipping a draw than executing it.

The proposed solution is to add a parameter called maxdrawcount which value is sourced from an
indirect parameter buffer. The maximum of executed draws becomes min(drawcount, maxdrawcount).
Why not only source drawcount from a buffer? Because some command processors needs to know from
the CPU the drawcount.

Current hardware support: NVIDIA Fermi
Expected hardware support: All OpenGL 5 hardware, AMD Southern Islands

1.4. A shader code path per draw in a multi draw

With ARB_multi_draw_indirect we can submit a huge number of draws however in many use cases, each
draw would need to execute a dedicated shader code path. An application could choose to batch
multiple code paths into a uber-shader as dynamically uniform indexing or unconditional branching is
really fast on current hardware.

http://www.opengl.org/registry/specs/ARB/shader_storage_buffer_object.txt
http://www.x.org/docs/AMD/old/si_programming_guide_v2.pdf
http://www.g-truc.net/post-0518.html#menu
http://www.opengl.org/registry/specs/ARB/multi_draw_indirect.txt
http://www.opengl.org/registry/specs/ARB/multi_draw_indirect.txt
http://www.opengl.org/sdk/docs/man/xhtml/glMultiDrawElementsIndirect.xml
http://www.opengl.org/registry/specs/ARB/multi_draw_indirect.txt

However, GPU execution units (CU on Southern Islands / SM on NVDIA) need to allocate an amount of
registers according to the shader complexity. The GLSL compiler is in charge of figuring out how many
registers is required to guarantee the execution of any code path in the uber-shader. Hence, using a
trivial code path from an uber-shader will result in over-allocating GPU registers and underutilizing the
GPU.

Looking at Southern Islands architecture, it appears that each execution unit has a dedicated shader
code pointer. Hence, it seems possible to execute a different shader code path for each draw by
providing a different pointer. Furthermore, we could allocate the correct number of registers if we had
an API to bake the code paths per draw and if the DrawArraysIndirectCommand and
DrawElementsIndirectCommand could add a parameter to identify the shader code path per draw.

typedef struct{
uint count;
uint primCount;
uint firstIndex;
int baseVertex;
uint baseInstance;
uint programID; // Added to identify a shader code path

} DrawElementsIndirectCommand;

typedef struct{

uint count;
uint primCount;
uint first;
uint baseInstance;
uint programID; // Added to identify a shader code path

} DrawArraysIndirectCommand;

Listing 1.4: DrawElementsIndirectCommand and DrawArraysIndirectCommand with an extra parameter

Sadly, considering the poor performance of NVIDIA gl_DrawID, it seems unlikely to be able to implement
such behavior to provide ARB_multi_draw_indirect like performance for shader code path switching.

Southern Islands introduced a new class or register called SH that can contain frequently update
registers including user data or shader code pointer (program base). Once again, Southern Islands
architecture doesn’t seem far off for such future idea.

Expected hardware support: Southern Islands, Future hardware

1.5. Shader indexed lose states

OpenGL has a lot of lose states. Many of them could disappeared thanks to fully programmable
blending: these include the fixed function blend states, dithering and the logical operations. Other
seems to remain relevant for a while, including the following states:

 Scissor test

 Depth test

 Stencil operations

 Face culling

 Polygon mode

 Polygon offset

http://www.opengl.org/registry/specs/ARB/multi_draw_indirect.txt

 DrawBuffers indirection

With OpenGL 4.1 and ARB_viewport_array, the OpenGL ARB introduced shader indexed lose-states for
the viewport in OpenGL. Writing to gl_ViewportIndex in the geometry shader, we can choose within the
shader code which one of the GL_MAX_VIEWPORTS viewports should be used to rasterize a primitive.

Enabling such indexing of lose-states by either the command processor or the shader invocations will
allow pushing forward the multi draw indirect approach for more complex scenarios. Tile based GPU
architectures might benefit the most of such approach: it allows reducing the number of draw and
dispatch calls but also it could be used to reduce the number of rendering passes necessary for a frame,
particularly reducing the bandwidth consumption and the CPU overhead of tile based GPUs.

Expected hardware support: Future mobile hardware first followed by future desktop hardware

1.6. GL_NV_bindless_multi_draw_indirect

This is the last piece of NVIDIA bindless API allowing draw submission without binding vertex arrays or
indirect draw buffer for lower CPU overhead. With OpenGL 5 hardware, we could consider vertex arrays
deprecated but a bindless indirection draw buffer remains a step forward.

Current hardware support: NVIDIA Fermi
Expected hardware support: OpenGL 5 hardware

1.7. GL_AMD_interleaved_elements

This extension is really ugly but the functionality is really interesting. Instead of having a single element
array, thanks to this extension we can have up to 4 element arrays and we can index each vertex
attribute with the element array of our choice. There is quite some software actually generating meshes
using multiple element arrays and the current solution is to duplicate attributes on the CPU. This
functionality avoids the CPU cost for the attribute duplications and it saves the extra attributes
bandwidth.

Current hardware support: AMD Southern Islands

http://www.opengl.org/registry/specs/ARB/viewport_array.txt
http://www.opengl.org/registry/specs/NV/bindless_multi_draw_indirect.txt
http://www.opengl.org/registry/specs/AMD/interleaved_elements.txt

2. Resources

2.1. GL_ARB_bindless_texture

ARB_bindless_texture was promoted from NV_bindless_texture. It allows a shader invocation to access
an “infinite” number of textures, any texture resident in GPU memory. Texture handles are stored in a
uniform buffer and accessed through indexing.

#version 420 core
#extension GL_ARB_bindless_texture : require

#define handle uvec2
#define FRAG_COLOR 0
#define MATERIAL 0

layout(binding = MATERIAL) uniform material
{
 handle Diffuse; // This is the handle for the bindless texture
} Material;

in block
{
 vec2 Texcoord;
} In;

layout(location = FRAG_COLOR, index = 0) out vec4 Color;

void main()
{
 Color = texture(sampler2D(Material.Diffuse), In.Texcoord.st);
}

Listing 2.1.1: Example of a fragment shader sampling and bindless texture

One great side effect of that API is that textures can be part of data representing the materials for
example.

Unfortunately, this extension can’t be implemented on Haswell as it is specified. Haswell supports
bindless ressources but this extension requires having both the sampler states and the texture states to
be bindless. Haswell only supports bindless texture states but sampler states remain registers which
realistically makes more sense. Do we really need a different sampler per texture? Not really.

Current hardware support: NVIDIA Kepler, AMD Southern Islands
Expected hardware support: All OpenGL 5 hardware

2.2. GL_NV_shader_buffer_load and GL_NV_shader_buffer_store

NVIDIA buffer load and store is pretty much a set of bindless buffer extensions. Going toward such
design really emphasizes that there is no element array buffer, array buffer, shader storage buffer,
transform feedback buffer: It’s all just memory and we should manage the same way we manage any
form of memory.

A major different with ARB_shader_storage_buffer_object extension in OpenGL 4.3 is that the access to
the data is performed through a pointer in the shader code.

http://www.opengl.org/registry/specs/ARB/bindless_texture.txt
http://www.opengl.org/registry/specs/ARB/bindless_texture.txt
http://www.opengl.org/registry/specs/NV/bindless_texture.txt
http://www.opengl.org/registry/specs/NV/shader_buffer_load.txt
http://www.opengl.org/registry/specs/NV/shader_buffer_store.txt
http://www.opengl.org/registry/specs/ARB/shader_storage_buffer_object.txt

Current hardware support: NVIDIA Fermi
Expected hardware support: All OpenGL 5 hardware, AMD Southern Islands

2.3. GL_ARB_sparse_texture

ARB_sparse_texture is a subset of AMD_sparse_texture enabling virtual texturing with seamless texture
filtering. Thanks to this extension we can create 16K by 16K texels textures that memory isn’t fully
resident. In practice when we create a sparse texture, a large table of pointers to memory pages is
allocated. The allocation of these memory pages is an independent task performed with
glTexPageCommitmentARB on a subsection of that texture.

Sparse textures can be used for sampling and rendering. Supported formats are not specified.
Multisample textures are explicitly not supported. For others formats, including compressed and depth
stencil formats, it’s a matter of querying GL_NUM_VIRTUAL_PAGE_SIZES_ARB. Supporting depth formats is a
serious advantage to do high-resolution shadow map generation.

Current hardware support: AMD Southern Islands, NVIDIA Fermi
Expected hardware support: All OpenGL 5 hardware

2.4. GL_AMD_sparse_texture

ARB_sparse_texture is essentially a fixed design of AMD_sparse_texture. However, AMD extension
provides shader functions to query the status of a sparse texture fetch using dedicated sampling
functions.

#version 420 core
#extension GL_AMD_sparse_texture : require

#define handle uvec2
#define FRAG_COLOR 0
#define MATERIAL 0

layout(binding = DIFFUSE) uniform sampler2D Diffuse;

in block
{
 vec2 Texcoord;
} In;

layout(location = FRAG_COLOR, index = 0) out vec4 Color;

void main()
{

if(GL_AMD_sparse_texture)
{

vec4 Fetch = vec4(0);
 int Code = sparseTexture(Diffuse, In.Texcoord.st, Fetch);
 if(sparseTexelResident(Code))
 Color = Fetch;
 else
 Color = vec4(0.0, 0.5, 1.0, 1.0);
}
else
{

http://www.opengl.org/registry/specs/ARB/sparse_texture.txt
http://www.opengl.org/registry/specs/ARB/sparse_texture.txt
http://www.opengl.org/registry/specs/AMD/sparse_texture.txt
http://www.opengl.org/registry/specs/AMD/sparse_texture.txt
http://www.opengl.org/registry/specs/ARB/sparse_texture.txt
http://www.opengl.org/registry/specs/AMD/sparse_texture.txt

texture(Diffuse, In.Texcoord.st);
}

}

Listing 2.4.1: Example of texel residence query with AMD_sparse_texture extension

The following functions are used to interpret the status.

 bool sparseTexelResident(int code) : Returns true if the texture read that produced code
retrieved valid data, and produced code retrieved valid data, and false otherwise ;

 bool sparseTexelMinLodWarning(int code) : Returns true if the texture read that produced code
required a texel fetch from any LOD lower than the user specified LOD warning threshold ;

 int sparseTexelLodWarningFetch(int code) : Returns the LOD calculated by the texture read
that generated <code> and resulted in a condition that would cause sparseTexelMinLodWarning
to return true. If the LOD warning was not encountered, this function returns zero.

Current hardware support: AMD Southern Islands
Expected hardware support: Future hardware

2.5. GL_AMD_sparse_texture_pool

A limitation of ARB_sparse_texture is that each single texture page is backed by its own memory. We
could imagine a design where multiple texture pages could share the same memory, providing new ways
for texture compression.

This is what AMD_sparse_texture_pool is aiming at sadly the specification haven’t been released yet.

Current hardware support: AMD Volcanic Islands
Expected hardware support: Future hardware

2.6. Seamless texture stitching

Unfortunately texture and sparse texture share the same limitations for the maximum texture sizes.
16K*16K is a very large texture but it’s a very small sparse texture. What we really want is something
like 1M*1M pixels sparse texture however having such large texture would require a lot more precision
for the texture coordinates in texture units.

An alternative to making texture bigger is called seamless texture stitching which is pretty much what
the hardware does for seamless cubemap filtering. Applied to sparse textures, the hardware would be
able to seamlessly filter across texture layers of a sparse texture 2D array.

Expected hardware support: Future hardware

2.7. 3D memory layout for sparse 3D textures

On AMD Southern Islands, when we query the texture page sizes of a sparse 3D texture, we realize that
internally a 3D texture is stored as layers of 2D textures. This make filtering 3D textures less efficient but
it also implies that sparse 3D texture pages are not little dices but 2D plans.

http://www.opengl.org/registry/specs/AMD/sparse_texture.txt
http://www.opengl.org/registry/specs/ARB/sparse_texture.txt

On NVIDIA Fermi, sparse 3D texture pages are stored as dices which make them better candidates for
volumetric rendering technics.

Current hardware support: NVIDIA Fermi
Expected hardware support: All OpenGL 5 hardware

2.8. Sparse buffer

The OpenGL ARB released ARB_sparse_texture at Siggraph 2013 but sadly it didn’t came with an
equivalent sparse buffer extension. Direct3D 11.2 has such feature and it would be nice to have it with
OpenGL too.

Expected hardware support: AMD Southern Islands, NVIDIA Fermi, All OpenGL 5 hardware

2.9. GL_KHR_texture_compression_astc

The Khronos Group has standardized a new texture format called ASTC that provides very low bit rate
and HDR support. Because, it's a KHR extension, it means that both the OpenGL ES group and the
OpenGL ARB group voted to support that feature which gives me good hope that we will "soon" have
support for this format on all desktop and mobile platforms.

Block size Bits per pixels Compression ratio

4x4 8.00 4:1

5x4 6.40 5:1

5x5 5.12 6.25:1

6x5 4.27 7.5:1

6x6 3.56 9:1

8x5 3.20 10:1

8x6 2.67 12:1

8x8 2.00 16:1

10x5 2.56 12.5:1

10x6 2.13 15:1

10x8 1.60 20:1

10x10 1.28 25:1

12x10 1.07 30:1

12x12 0.89 36:1

Current hardware support: Imagination Technologies PowerVR6XT, ARM Mali T700, NVIDIA Maxwell
Expected hardware support: Future hardware

2.10. GL_INTEL_map_texture

GL_INTEL_map_texture allows choosing the memory layout of a texture between a customs swizzle order
(GL_LAYOUT_DEFAULT_INTEL) and a linear order (GL_LAYOUT_LINEAR_INTEL) that can be cached

http://www.opengl.org/registry/specs/ARB/sparse_texture.txt
http://www.opengl.org/registry/specs/KHR/texture_compression_astc_hdr.txt
http://www.opengl.org/registry/specs/INTEL/map_texture.txt

(GL_LAYOUT_LINEAR_CPU_CACHED_INTEL). Textures created with a linear memory layout can be mapped
just like a buffer with:

void* glMapTexture2DINTEL(GLuint texture,
GLint level, GLbitfield access, GLint *stride, GLenum *layout);

Caching the texture on the client side can result in better performance when reading texture on CPU but
might negatively impact the GPU side access to the texture. Thus the option is intended only for cases
when volume of the read access from CPU justifies such effect.

Unfortunately, we can’t map textures created with GL_LAYOUT_DEFAULT_INTEL memory layout but this is
only a driver limitation as Intel exposes its memory layout in its Developer’s Guide. However on PC, the
memory layout of each format; each architecture; each vendor; can be different which is quickly not
tractable for any software. For each capability, IHVs would have to agree on a standard memory layout.

Current hardware support: Intel Sandy Bridge
Expected hardware support: All OpenGL 5 hardware, AMD Evergreen, NVIDIA Fermi

2.11. GL_ARB_seamless_cubemap_per_texture

OpenGL 3.2 and ARB_seamless_cube_map provide a state for sampling a cube map accessing multiple
faces to avoid seams. This functionality is embodied by a global state that affects every cubemaps. If we
want to use seamless cube map filtering for one cube map we need to call
glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS). If we don’t want to use it on another texture, we need to call
glDisable(GL_TEXTURE_CUBE_MAP_SEAMLESS). If we want to apply these two textures on a single mesh,
then we need to do two rendering passes. ARB_seamless_cubemap_per_texture changes this behavior
giving each cube map texture and sampler a state to enable or not the seamless cubemap filtering so
that we can sample cube maps with both ways in a single draw.

Current hardware support: AMD RV700, NVIDIA Kepler
Expected hardware support: All OpenGL 5 hardware

2.12. DMA engines

NVIDIA Fermi and AMD Northern Islands have dedicated DMA engines that can live their lives on their
own. Hence a dedicated thread could be in charge of streaming resources because at some point the
application figure out that they might become useful. During these transfers, the graphics engine can
continue its life independently without any required synchronization. Obviously, the transfers would
have to be completed before using the resources but with enough anticipation we could need a
synchronization object only for the purpose of guarantying correctness on all possible hardware but
without actually hitting that fence.

Currently NVIDIA supports this behavior but only by creating a separated context on a dedicated thread.
This is workable but cumbersome and it costs thread safety penalty for the entire OpenGL
implementation.

An explicit use of the DMA engine for fully asynchronous transfers and performing transfer outside of
the rendering code would be really nice to have.

https://software.intel.com/sites/default/files/4th-gen-core-graphics-dev-guide.pdf
http://www.opengl.org/registry/specs/ARB/seamless_cubemap_per_texture.txt
http://www.opengl.org/registry/specs/ARB/seamless_cube_map.txt
http://www.opengl.org/sdk/docs/man/html/glEnable.xhtml
http://www.opengl.org/sdk/docs/man/html/glEnable.xhtml
http://www.opengl.org/registry/specs/ARB/seamless_cubemap_per_texture.txt

Current hardware support: AMD Northern Islands, NVIDIA Fermi
Expected hardware support: All OpenGL 5 hardware

2.13. Unified memory

With Haswell architecture, Intel has announced a Direct3D extension called InstantAccess aiming at
giving access to the same memory to the CPU and the GPU. With Southern Islands, AMD introduced a
first step to this idea with AMD_pinned_memory that allows creating an OpenGL buffer object out of users
CPU side memory.

Among the many possible use cases, the hardware support of InstantAccess could ensure the best
possible efficiency for persistent mapped buffers introduced with OpenGL 4.4.

Current hardware support: Intel Haswell, AMD Southern Islands (partial support)
Expected hardware support: Future hardware

https://software.intel.com/sites/default/files/4th-gen-core-graphics-dev-guide.pdf
http://www.opengl.org/registry/specs/AMD/pinned_memory.txt
http://www.opengl.org/registry/specs/ARB/buffer_storage.txt

3. Shader operations

3.1. GL_ARB_shader_group_vote

Branching is a very interesting topic with GPUs. A view about GPUs is that they are designed arounf two
concepts: How we access memory and how multiple shader invocations diverge. From that view, ALUs
are just the cherry on the cake. Branching is a very important when it comes to performance. For
example, in AMD Southern Islands architecture, I found five different methods to handle branching.

The OpenGL ARB has tackled this issue by considering how we could help the compiler to produce more
efficient branching code. The proposed solution is exposed by ARB_shader_group_vote, a small subset of
NV_gpu_shader5 which provides the GLSL functions anyInvocationARB, allInvocationsARB,
allInvocationsEqualARB to compare values across shader invocations and take decisions based on those
results.

if(allInvocationsARB(condition))
result = do_fast_path();

else
result = do_general_path();

Current hardware support: NVIDIA Fermi
Expected hardware support: All OpenGL 5 hardware, AMD Southern Islands

3.2. GL_NV_shader_thread_group

This extension goes into the super resolution range of ideas where we no longer want to think at a fixed
pixel resolutions but instead at higher or lower resolution than the native resolution.

GPUs don't actually execute anything on a per-pixel or a per-vertex rate but in many different kind of
group. A first group, the warp/wavefront is actually an array of shader invocations. Another famous
group is the quadpixel, a set of 4 fragments. The texture LOD calculation is computed per quadpixel
because the analytic computation of derivatives required for the texture LOD computation is very
complex. However, it is really easy to compute within a quadpixel: It's only the different between the
values across quadpixels.

This extension gives access to quadpixels allowing swizzling the intermediate results across all fragment
shader invocations. Let's say that fragment shader requires 4 texture sampling. In some areas, we could
consider that it is not that useful to sample per fragment and we can deal will sampling per quadpixels.
This feature should interact pretty well with ARB_shader_group_vote.

Current hardware support: NVIDIA Fermi
Expected hardware support: All OpenGL 5 hardware, AMD Southern Islands

3.3. GL_NV_shader_thread_shuffle

This extension extends NV_shader_thread_group to any of the shader invocations of a wrap/wavefront. It
seems very likely that we could use NV_shader_thread_group on any GPU because all GPUs use
quadpixels however, the shader invocation group size is different for each GPU vendors: 32 for NVIDIA;

http://www.opengl.org/registry/specs/ARB/shader_group_vote.txt
http://developer.amd.com/wordpress/media/2012/12/AMD_Southern_Islands_Instruction_Set_Architecture.pdf
http://www.opengl.org/registry/specs/ARB/shader_group_vote.txt
http://www.opengl.org/registry/specs/NV/gpu_shader5.txt
http://www.opengl.org/registry/specs/NV/shader_thread_group.txt
http://www.opengl.org/registry/specs/ARB/shader_group_vote.txt
http://www.opengl.org/registry/specs/NV/shader_thread_shuffle.txt
http://www.opengl.org/registry/specs/NV/shader_thread_group.txt
http://www.opengl.org/registry/specs/NV/shader_thread_group.txt

64 for AMD; and variable for Intel, between 4 to 16 shader invocations. This feature sounds particularly
useful for post processed framebuffer antialiazing and maybe things like soft shadows.

Current hardware support: NVIDIA Kepler
Expected hardware support: Future hardware

3.4. GL_NV_shader_atomic_float

This extension is simply extending float add and float exchange support to atomic operations.

Interaction with: New GLSL atomic operation functions

NV_shader_buffer_store float imageAtomicAdd(IMAGE_PARAMS, float data)
float imageAtomicExchange(IMAGE_PARAMS, float data)

ARB_shader_image_load_store float atomicAdd(float *address, float data);
float atomicExchange(float *address, float data);

ARB_shader_storage_buffer_object float atomicAdd(inout float mem, float data);
float atomicExchange(inout float mem, float data);

Only atomic counter operations are not affected by this extension.

Current hardware support: NVIDIA Fermi
Expected hardware support: Future hardware

3.5. GL_AMD_shader_atomic_counter_ops

ARB_shader_atomic_counters and OpenGL 4.2 introduced the concept of atomic counter operations:
increment, decrement and query. Atomic counters are designed to expose the fastest atomic
operations.

AMD GPUs support these atomic operations in GDS memory which is faster than image and buffer
atomic operations. However, AMD GPUs support more GDS atomic operations: Increment and
decrement with wrap ; addition and subtraction ; minimum and maximum ; bitwise operators (AND, OR,
XOR, etc.) ; masked OR operator ; exchange, and compare and exchange operators.
AMD_shader_atomic_counter_ops exposes all these operations.

Current hardware support: AMD Southern Islands

3.6. GL_ARB_compute_variable_group_size

The purpose of this extension is simply to specify the sizes of a workgroup at dispatch time instead of
compile time. This is an OpenCL 1.2 features but it can not be efficiently implemented by AMD current
GPUs as the implementation would have to recompile the shaders for each different set of size.
However, this extension is natively supported by NVIDIA architechtures.

// GLSL side
#define LOCAL_SIZE_X *
#define LOCAL_SIZE_Y *
#define LOCAL_SIZE_Z *

http://www.opengl.org/registry/specs/NV/shader_atomic_float.txt
http://www.opengl.org/registry/specs/AMD/shader_atomic_counter_ops.txt
http://www.opengl.org/registry/specs/ARB/shader_atomic_counters.txt
http://www.opengl.org/registry/specs/AMD/shader_atomic_counter_ops.txt
http://www.opengl.org/registry/specs/ARB/compute_variable_group_size.txt

layout(

local_size_x = LOCAL_SIZE_X,
local_size_y = LOCAL_SIZE_Y,
local_size_z = LOCAL_SIZE_Z) in;

// C++ side
void glDispatchCompute(GLuint num_groups_x, GLuint num_groups_y, GLuint num_groups_z);

Listing 3.6.1: Compute shader invocation with built-in local sizes.

With ARB_compute_variable_group_size the sizes of a workgroup can change between compute
dispatches.

// C++ side
void glDispatchComputeGroupSizeARB(

GLuint num_groups_x, GLuint num_groups_y, GLuint num_groups_z,
GLuint group_size_x, GLuint group_size_y, GLuint group_size_z);

Listing 3.6.2: Compute shader invocation with per-draw group sizes

Current hardware support: NVIDIA Fermi
Expected hardware support: All OpenGL 5 hardware

3.7. Multi compute dispatch

Just like draw indirect benefits from multi draw indirect, it seems that compute dispatch indirect could
benefit from multi compute dispatch. With such feature we could imagine compute shaders designed to
build the list of compute dispatch to be executed.

Such feature would require a gl_DispatchID providing a way to index resources per dispatch. However,
gl_DispatchID is equivalent to gl_DrawID which is pretty inefficient on NVIDIA hardware.

Expected hardware support: Future hardware

3.8. GL_NV_gpu_shader5

This extension was released with Fermi GPUs. It extends ARB_gpu_shader5 with a variety of Fermi specific
features at the time. It contains the features later promoted into ARB_shader_group_vote, the features
picked up by AMD_gpu_shader_int64 for AMD Southern Islands and the following:

 Support for a full set of 8-, 16-, 32-, and 64-bit scalar and vector data types, including uniform
API, uniform buffer object, and shader input and output support (int8_t, int16_t, int64_t,
uint8_t, uint16_t, uint64_t, float16_t, i8vec2, i8vec3, i8vec4, i16vec2, i16vec3, i16vec4,
i64vec2, i64vec3, i64vec4, u8vec2, u8vec3, u8vec4, u16vec2, u16vec3, u16vec4, u64vec2, u64vec3,
u64vec4, f16vec2, f16vec3, f16vec4);

 The ability to aggregate samplers into arrays, index these arrays with arbitrary expressions, and
not require that non-constant indices be uniform across all shader invocations;

 New built-in functions to pack and unpack 32-bit unsigned integer types into a two-component
16-bit floating-point vector (uint packFloat2x16(f16vec2 v), f16vec2 unpackFloat2x16(uint
v));

http://www.opengl.org/registry/specs/NV/gpu_shader5.txt
http://www.opengl.org/registry/specs/ARB/gpu_shader5.txt
http://www.opengl.org/registry/specs/ARB/shader_group_vote.txt
http://www.opengl.org/registry/specs/AMD/gpu_shader_int64.txt

 Vector relational functions supporting comparisons of vectors of 8-, 16-, and 64-bit integer types
or 16-bit floating-point types;

 Extending texel offset support to allow loading texel offsets from regular integer operands
computed at run-time, except for lookups with gradients (textureGrad*);

 Relaxing the requirement of a tessellation shader stage when processing patches. This allows
the “patches” layout qualifier can be used for geometry shader input, as input to transform
feedback and as input to the fixed-function rasterization stages where each point is drawn as
independent points; and

 The capability to read per-patch variable written by a tessellation control shader by the
geometry shader.

Current hardware support: NVIDIA Fermi

3.9. GL_AMD_gpu_shader_int64

AMD_gpu_shader_int64 is a superset of the 64-bit support exposed by NV_gpu_shader5 and supported by
AMD Southern Islands. This extension introduces the following features:

 Support for 64-bit scalar (int64_t, uint64_t) and vector integer data types (i64vec*, u64vec*),
including uniform API, uniform buffer object, transform feedback, and shader input and output
support;

 New built-in functions to pack and unpack 64-bit integer types into a two-component 32-bit
integer vector (int64BitsToDouble, uint64BitsToDouble);

 New built-in functions to convert double-precision floating-point values to or from their 64-bit
integer bit encodings (doubleBitsToInt64, doubleBitsToUint64);

 Vector relational functions supporting comparisons of vectors of 64-bit integer types; and

 Common functions abs, sign, min, max, clamp, and mix supporting arguments of 64-bit integer
types.

AMD_gpu_shader_int64 seems to be an obvious candidate to become an ARB extension and an OpenGL 5
hardware feature.

Current hardware support: AMD Southern Islands
Expected hardware support: All OpenGL 5 hardware, NVIDIA Fermi

3.10. GL_AMD_gcn_shader

AMD has released an extension with miscellaneous features supported by Southern Islands ISA called
AMD_gcn_shader:

 New cubemap addressing GLSL functions: cubeFaceIndexAMD to identify which cubemap face is
addressed for a specific cubemap texture coordinate argument; cubeFaceCoordAMD to compute
the 2D texture coordinates used to address that face.

 A new shader invocation group GLSL function: ballotAMD which returns a 64-bit bitfield
indicating for each shader invocation of a wavefront whether the evaluation of an expression is
true.

http://www.opengl.org/sdk/docs/man/html/textureGrad.xhtml
http://www.opengl.org/registry/specs/AMD/gpu_shader_int64.txt
http://www.opengl.org/registry/specs/AMD/gpu_shader_int64.txt
http://www.opengl.org/registry/specs/NV/gpu_shader5.txt
http://www.opengl.org/registry/specs/AMD/gpu_shader_int64.txt
http://www.opengl.org/registry/specs/AMD/gcn_shader.txt

 A new timing GLSL function: timeAMD returns a 64-bit value representing the current clock as
seen by the shader processor. Each shader invocation of a shader invocation group timeAMD may
produce a different value.

timeAMD will be extremely useful to optimize shader code. While, being ALU bound is very unlikely on
modern GPUs, this function can be used to study the behavior of atomic operations, texture fetching,
branching, etc.

ballotAMD is also very useful in a similar way than anyInvocationARB, allInvocationsARB and
allInvocationsEqualARB but with more control. With ballotAMD we can express ideas like if an
expression is true for 75% of the shader invocations, choose code path A otherwise use code path B.

Current hardware support: AMD Southern Islands
Expected hardware support: Future hardware

3.11. GL_NV_vertex_attrib_integer_64bit

NV_vertex_attrib_integer_64bit requires NV_gpu_shader5 to provide 64-bit integer and unsigned
integer support for vertex attributes.

Current hardware support: NVIDIA Fermi
Expected hardware support: Not needed in OpenGL 5 hardware

3.12. GL_AMD_ shader_trinary_minmax

This extension adds functions to find the minimum, maximum and median of three float or integer
scalar or vector inputs.

Syntax Description
genType min3(genType x, genType y, genType z)
genIType min3(genIType x, genIType y, genIType z)
genUType min3(genUType x, genUType y, genUType z)

Returns the per-component minimum
value of x, y, and z

genType max3(genType x, genType y, genType z)
genIType max3(genIType x, genIType y, genIType z)
genUType max3(genUType x, genUType y, genUType z)

Returns the per-component maximum
value of x, y, and z

genType mid3(genType x, genType y, genType z)
genIType mid3(genIType x, genIType y, genIType z)
genUType mid3(genUType x, genUType y, genUType z)

Returns the per-component median value
of x, y, and z

Current hardware support: AMD Southern Islands
Expected hardware support: Future Hardware

http://www.opengl.org/registry/specs/NV/vertex_attrib_integer_64bit.txt
http://www.opengl.org/registry/specs/AMD/gpu_shader_int64.txt
http://www.opengl.org/registry/specs/NV/gpu_shader5.txt
http://www.opengl.org/registry/specs/AMD/shader_trinary_minmax.txt

4. Framebuffer

4.1. GL_AMD_sample_positions

Setting the sample positions is to me a very useful feature for post processing antialiasing but also for
very high multisample rendering using multiple passes. Another approach is based on considering that
the eye is a continuous integrator of a signal. Using different sample position per frame, each frame will
be slightly different and the eye will perceive less aliasing. This is called temporal antialiasing.

Current hardware support: AMD Evergreen
Expected hardware support: All OpenGL 5 hardware

4.2. GL_EXT_framebuffer_multisample_blit_scaled

This extension is a collaboration between Apple and NVIDIA. It seems design to handle the high DPI
screens by allowing in a single call of glBlitFramebuffer to resolve a multisampled framebuffer and
scale the resulting framebuffer in a single operation.

Current hardware support: NVIDIA G80
Expected hardware support: All OpenGL 5 hardware

4.3. GL_NV_multisample_coverage and GL_NV_framebuffer_multisample_coverage

Multisample coverage is a method based on using more coverage samples than color samplers. The
implementation can modulate the multisampling resolution according to the number of coverage
samples covering the color sample.

For example, if each color sample is associated with four coverage samples but only 50% of its coverage
samples are covered then we can apply an equivalent weight while resolving the multisampling for this
color sample.

Current hardware support: NVIDIA G80

4.4. GL_AMD_depth_clamp_separate

NV_depth_clamp introduced the concept of depth clamping so that primitives rendered outside the view
near and far planes can have their fragment depth values clamped in the depth range instead of clipping
the primitives. AMD_depth_clamp_separate goes a step further, by independently enabling depth
clamping on either the near or far planes.

Current hardware support: AMD RV670

http://www.opengl.org/registry/specs/AMD/sample_positions.txt
http://www.opengl.org/registry/specs/EXT/framebuffer_multisample_blit_scaled.txt
http://www.opengl.org/sdk/docs/man/html/glBlitFramebuffer.xhtml
http://www.opengl.org/registry/specs/NV/multisample_coverage.txt
http://www.opengl.org/registry/specs/NV/framebuffer_multisample_coverage.txt
http://www.opengl.org/registry/specs/AMD/depth_clamp_separate.txt
http://www.opengl.org/registry/specs/NV/depth_clamp.txt
http://www.opengl.org/registry/specs/AMD/depth_clamp_separate.txt

5. Blending

Programmable blending has been on the wish list of many graphics programmers for a long time. There
are three possible approaches forward: By modifying the fragment shader stage, through a new per
pixel shader stage or with a per tile shader stage. The Khronos Group released EXT_pixel_local_storage
OpenGL ES extension for PowerVR Series 6 and ARM Mali T700 and Intel has released
INTEL_fragment_shader_ordering that is also implemented by AMD drivers. It’s a huge step toward the
fragment shader stage approach but all three approaches are actualy pretty realistic for future hardware
and standardization.

5.1. GL_NV_texture_barrier

Texture barrier is an NVIDIA extension but it has been largely implemented by others vendors (even
Apple in MacOSX 10.9!). This extension was the very first step toward programmable blending allowing
reading once and writing once at the same pixel location within a fragment shader invocation.

Effectively, this extension relaxes the interdiction to bind a texture that is also used as a framebuffer
attachment. It also provides a mechanism to avoid read-after-write hazard.

Current hardware support: AMD R600, NVIDIA G80
Expected hardware support: Intel Sandy Bridge

5.2. GL_EXT_shader_framebuffer_fetch (OpenGL ES)

This extension provides a basic form of programmable blending providing an effective approach to
replace the fixed function blending operations.

It allows declaring the fragment better outputs with an inout qualifier so that we can read the previous
values stored in the framebuffer. We can logically think this behavior as giving access to the destination
values of the blend equation to the fragment shader invocation.

Looking at the tiled base GPU architectures, this extension is a first step allowing reading the on-chip
memory.

Current hardware support: Imagination Technologies PowerVR 5XT Series
Expected hardware support: Future hardware

5.3. GL_ARM_shader_framebuffer_fetch (OpenGL ES)

ARM_shader_framebuffer_fetch is a superset of EXT_shader_framebuffer_fetch providing a switchable
mode to indicate that reading the framebuffer value should be performed once per sample or once per
pixel. With EXT_shader_framebuffer_fetch, this is an undefined behavior.

Current hardware support: ARM Mali T700
Expected hardware support: Future hardware

5.4. GL_ARM_shader_framebuffer_fetch_depth_stencil (OpenGL ES)

https://www.khronos.org/registry/gles/extensions/EXT/EXT_shader_pixel_local_storage.txt
http://www.opengl.org/registry/specs/NV/texture_barrier.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_shader_framebuffer_fetch.txt
https://www.khronos.org/registry/gles/extensions/ARM/ARM_shader_framebuffer_fetch.txt
https://www.khronos.org/registry/gles/extensions/ARM/ARM_shader_framebuffer_fetch.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_shader_framebuffer_fetch.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_shader_framebuffer_fetch.txt
https://www.khronos.org/registry/gles/extensions/ARM/ARM_shader_framebuffer_fetch_depth_stencil.txt

ARM_shader_framebuffer_fetch and EXT_shader_framebuffer_fetch allow reading the framebuffer
attachment color values previously stored. However, those extensions don’t interact with the depth and
stencil framebuffer attachments. ARM_shader_framebuffer_fetch_depth_stencil removes this limitation
by exposing gl_LastFragDepthARM and gl_LastFragStencilARM input variables.

A use case of this extension is soft particle rendering in a single pass.

Current hardware support: ARM Mali T700
Expected hardware support: Future hardware

5.5. GL_EXT_pixel_local_storage (OpenGL ES)

EXT_pixel_local_storage provides the most advance programmable blending extension to date.

It allows writing data into a pixel local storage block instead of the framebuffer for on-chip memory
storage. The application gets control over the reads, writes and invalidations of the on-chip memory for
potential huge bandwidth and power savings.

For example, pixel local storage can be used to store the deferred shading / lighting G-Buffer and then
subsequently resolve it with another fragment shader invocation using a different shader code. This is
pretty similar to EXT_shader_framebuffer_fetch but it’s explicit so that we could store and read the
depth buffer. Furthermore, the pixel local storage can contain arrays so that we can store multiple
fragments giving opportunities for Order Independent Transparency with no bandwidth cost.

Obviously, on-chip memory is pretty limited but GPU architectures could rely on the cache hierarchy to
extend the pixel local storage size. This behavior is exposed in this extension by two constants:
GL_MAX_SHADER_PIXEL_LOCAL_STORAGE_FAST_SIZE_EXT and GL_MAX_SHADER_PIXEL_LOCAL_STORAGE_SIZE_EXT.

#version 300 es
#extension GL_EXT_shader_pixel_local_storage : enable

__pixel_localEXT FragDataLocal {
 layout(r11f_g11f_b10f) mediump vec3 normal;
 layout(rgb10_a2) highp vec4 color;
 layout(rgba8ui) mediump uvec4 flags;
} gbuf;

/* */

void main()
{
 /* */
 gbuf.normal = v;
 gbuf.color = texture(sampler, coord);
 gbuf.flags = material_id;
}

Listing 5.5.1: Write data to pixel local storage block, example from EXT_pixel_local_storage

#version 300 es
#extension GL_EXT_shader_pixel_local_storage : enable

__pixel_localEXT FragDataLocal {
 layout(r11f_g11f_b10f) mediump vec3 normal;

https://www.khronos.org/registry/gles/extensions/ARM/ARM_shader_framebuffer_fetch.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_shader_framebuffer_fetch.txt
https://www.khronos.org/registry/gles/extensions/ARM/ARM_shader_framebuffer_fetch_depth_stencil.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_shader_pixel_local_storage.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_shader_pixel_local_storage.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_shader_framebuffer_fetch.txt
http://on-demand.gputechconf.com/gtc/2014/presentations/S4385-order-independent-transparency-opengl.pdf
https://www.khronos.org/registry/gles/extensions/EXT/EXT_shader_pixel_local_storage.txt

 layout(rgb10_a2) highp vec4 color;
 layout(rgba8ui) mediump uvec4 flags;
} gbuf;

out highp vec4 fragColor;

void main()
{
 fragColor = do_lighting(gbuf.normal, gbuf.color, gbuf.flags, light_pos);
}

Listing 5.5.2: Resolve pixel local storage block, example from EXT_pixel_local_storage

As great this extension is, using the fragment shader stage for both filling the pixel local storage block
and resolving a pixel local storage seem odd and limited. Other approach would be to enable compute
shader resolution to store the final result in shader storage buffers or texture images. In such case we
would have to figure out a way to express the window xy coordinates to locate the corresponding pixel
local storage which is probably not easy.

Going further, we could imagine extending this feature to generalize local storage to any shader stage. It
would be a form of compute shader shared memory that would be persistent after the completion of
the shader invocations.

Another and more even more powerful approach would be adding a dedicated and independent tile
shader stage and give it read only access to the pixel local storage blocks for all the pixel of a tile. This
approach effectively provides access to the entire on-chip memory.

Unfortunately, this extension is written against OpenGL ES 3.0 so there is no interaction with OpenGL ES
3.1 or OpenGL 4.3 framebuffer with no attachments, shader storage buffer or texture images.
Furthermore, it can’t be used with multisampling. Effectively, the pixel local storage is tightly baked with
the framebuffer and clears are even performed through the framebuffer clear functions as both pixel
local storage and the fragment shader ouputs are aliased.

Current hardware support: Imagination Technologies PowerVR Rogue, ARM Mali T700
Expected hardware support: Future hardware

5.6. Tile shading

EXT_pixel_local_storage allows expressing the most sophisticated programmable blending to date but
it seems that it should be possible to go one step further. What about adding a dedicated tile shader
stage after the fragment shader stage? The fragment shader stage would only need to write data to the
pixel local storage per pixel but the tile shader stage could read every data for each pixel of a tile to
output a single pixel per tile shader invocation.

#extension GL_EXT_shader_pixel_local_storage2 : enable

__pixel_localEXT FragDataLocal {
 layout(r11f_g11f_b10f) mediump vec3 normal;
 layout(rgb10_a2) highp vec4 color;
 layout(rgba8ui) mediump uvec4 flags;
} gbuf[][];

const uvec2 gl_TileSize; // Sizes of the tile

https://www.khronos.org/registry/gles/extensions/EXT/EXT_shader_pixel_local_storage.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_shader_pixel_local_storage.txt

in uvec2 gl_Tilecoord; // Pixel coordinates within the current tile
in uvec2 gl_TileID; // Identifier for the current tile reflecting the position in the window

Listing 5.5.3: Resolve pixel local storage block, example from EXT_pixel_local_storage

The use case of this could be to perform single pass, no bandwidth screen space antialiasing, some form
of motion estimation, some blurring, per-tile evaluations, etc. Obviously, such shader stage would be
bound to a tile which can quickly results in blocky artifacts so the graphics programmer would need to
remain wise.

Expected hardware support: Imagination Technologies PowerVR Rogue, ARM Mali T700

5.7. GL_INTEL_fragment_shader_ordering

GPUs guaranty that framebuffer writes are processed in primitive rasterization order however there is
no guarantee for texture image or shader storage buffer reads and writes.

INTEL_fragment_shader_ordering introduces GLSL beginFragmentShaderOrderingINTEL function which
stop the fragment shader invocation until all the previous fragment shader invocations for the same
window (x, y) coordinates returns. All the memory transactions are guaranteed to be completed so
that the fragment shader invocation could read the texture images and shader storage buffers
previously written within a same draw.

Hence, this extension provides an elaborated form of programmable blending applying on both texture
and buffer data. However, on the contrary to EXT_pixel_local_storage, this extension implies a high
performance cost.

A possible approach for how AMD is implementing this extension is using the GDS memory (64KB of
cache with built-in atomic operations shared across execution units). Tahiti (Radeon HD7900 ASIC) has
32 execution units, each working on 16 * 16 pixels tile for a total of 8192 pixels at a time (32 * 16 * 16).
Hence, the GDS has 8 bytes per pixel which implies that trashing the cache will be very quick without
screen space coherence. With atomic exchange, a wavefront would have to spin on
beginFragmentShaderOrderingINTEL waiting for GDS changes preventing the launch of further shader
invocation arrays to hide the wait. Southern Islands being capable to have up to 10 shader invocation
array live per execution unit we are limiting ourselves to 1/10 of the GPU peak performance. Without
careful profiling, using this extension will be particularly slow on AMD hardware.

I haven’t found time yet to study Haswell hardware specification in enough detail but hopefully there
are hardware improvements that may reduce this potential performance penalty.

Current hardware support: Intel Haswell, AMD Southern Islands
Expected hardware support: Future hardware

5.8. GL_KHR_blend_equation_advanced

This extension is the embodiment for why we need programmable blending. Clearly, most of the new
blend equations of this extension are not computed by the ROPs but by shader invocations. It seems
that an application could use image load and store and a compute shader to perform the same behavior:
No more of that, thanks.

https://www.khronos.org/registry/gles/extensions/EXT/EXT_shader_pixel_local_storage.txt
http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
http://en.wikipedia.org/wiki/Motion_estimation
http://www.opengl.org/registry/specs/INTEL/fragment_shader_ordering.txt
https://www.opengl.org/registry/specs/INTEL/fragment_shader_ordering.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_shader_pixel_local_storage.txt
http://www.opengl.org/registry/specs/NV/blend_equation_advanced.txt

Current hardware support: NVIDIA Fermi

5.9. GL_AMD_blend_minmax_factor

This extension provides two new blend equations that produce the minimum or maximum of the
products of the source color and source factor, and the destination color and destination factor.

Mode RGB Components Alpha Component
GL_FACTOR_MIN_AMD R = min(Rs * Sr, Rd * Dr)

G = min(Gs * Sg, Gd * Dg)
B = min(Bs * Sb, Bd * Db)

A = min(As * Sa, Ad * Da)

GL_FACTOR_MAX_AMD R = max(Rs * Sr, Rd * Dr)
G = max(Gs * Sg, Gd * Dg)
B = max(Bs * Sb, Bd * Db)

A = max(As * Sa, Ad * Da)

Current hardware support: AMD Northern Islands

http://www.opengl.org/registry/specs/AMD/blend_minmax_factor.txt

6. Stencil

6.1. GL_AMD_shader_stencil_export

This extension exposed the fragment shader built-in output variable gl_FragStencilRefAMD, allowing
writing per fragment shader invocation the stencil reference value used for the stencil test. For example,
the extension allows writing directly to the stencil buffer when the stencil operation is set to GL_REPLACE.

Current hardware support: AMD RV670

6.2. GL_AMD_stencil_operation_extended

The stencil operation takes the three arguments sfail, dpfail and dppass describing the operations for
updating the stencil buffer. With OpenGL 4.4 the available operation a pretty trivial: GL_KEEP, GL_ZERO,
GL_REPLACE, GL_INCR, GL_DECR, GL_INVERT, GL_INCR_WRAP and GL_DECR_WRAP. This AMD extension adds new
possible operations for the stencil buffer:

 GL_SET_AMD; (setting to the maximum representable value)

 GL_AND;

 GL_XOR;

 GL_OR;

 GL_NOR;

 GL_EQUIV;

 GL_NAND; and

 GL_REPLACE_VALUE_AMD (replacing with the operation source value instead of the reference value)

This extension also separate the value used for the stencil tests from the value used for the stencil
operation. The operation value can be set with glStencilOpValueAMD for either face.

Current hardware support: AMD Southern Islands

6.3. GL_AMD_shader_stencil_value_export

AMD_stencil_operation_extended decouples the stencil reference value (gl_FragStencilRefAMD) from the
stencil operation value.

This extension introduces a new fragment shader built-in output variable called gl_FragStencilValueAMD
allowing writing the operation value per shader invocation.

Current hardware support: AMD Southern Islands

http://www.opengl.org/registry/specs/AMD/shader_stencil_export.txt
http://www.opengl.org/registry/specs/AMD/stencil_operation_extended.txt
http://www.opengl.org/registry/specs/AMD/shader_stencil_export.txt
http://www.opengl.org/registry/specs/AMD/stencil_operation_extended.txt

7. Rendering pipeline

7.1. GL_INTEL_conservative_rasterization

If we explore glCapsViewer database we will see an extension called INTEL_conservative_rasterization
extension exposed in an Intel HD 4600 GPUs. The specification hasn’t been released but conservative
rasterization has been largely described in the Chapter 42 of GPU Gem 2.

There are two variants of conservative rasterization:

 Overestimated conservative rasterization: A polygon includes all pixels for which the
intersection between the pixel cell and the polygon is non-empty.

 Underestimated conservative rasterization: A polygon includes only the pixels whose pixel cell
lies completely inside the polygon.

Use cases for conservative rasterization are GPU based collision detections and occlusion culling. With
currently OpenGL 4 hardware to ensure somewhat correct result with need to keep framebuffer
resolution high to reduce (but not avoid!) missing intersections. With conservative rasterization, we can
get all the intersections and even save some fill-rate and bandwidth if this is useful.

Another perspective for such feature would be to implementable a programmable form of binning on
desktop and mobile GPUs. In tile based GPUs, binning is typically the fixed function step where
primitives are sorted per tile.

Figure 5.6.1: Comparing standard (a) and overestimated conservative (b) rasterization (GPU Gems 2)

Current hardware support: Intel Haswell
Expected hardware support: Future hardware

7.2. GL_AMD_vertex_shader_layer

OpenGL 3 hardware introduced layered rendering allowing rendering each primitive to a different
framebuffer attachment. However, to leverage this functionality, we need to use a geometry shader to

http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter42.html
http://delphigl.de/glcapsviewer/listreports.php?listreportsbyextension=GL_INTEL_conservative_rasterization
http://delphigl.de/glcapsviewer/listreports.php?listreportsbyextension=GL_INTEL_conservative_rasterization
http://delphigl.de/glcapsviewer/listreports.php?listreportsbyextension=GL_INTEL_conservative_rasterization
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter42.html
http://www.opengl.org/registry/specs/AMD/vertex_shader_layer.txt

specify gl_LayerID per generated primitive. Using a geometry shader is not free on contrary of setting
gl_LayerID. Following this reasoning, AMD published AMD_vertex_shader_layer which allows setting
gl_LayerID in the vertex shader. Considering that mobile GPUs don't have a geometry shader, it would
be particularly useful to use layered rendering.

Because most mobile hardware doesn’t have a geometry shader stage, such feature would enable
layered rendering on them.

Current hardware support: AMD Southern Islands
Expected hardware support: Future mobile hardware

7.3. GL_AMD_vertex_shader_viewport_index

This extension follows the same reasoning than AMD_vertex_shader_layer, enabling to choose the
rendering view port gl_ViewportIndex from the vertex shader stage.

Current hardware support: AMD Southern Islands
Expected hardware support: Future mobile hardware

7.4. GL_AMD_transform_feedback3_lines_triangles

With OpenGL 4.4, the application can use multiple transform feedback streams but only the first stream
can output primitives that are not points. AMD_transform_feedback3_lines_triangles removes this
restriction. Any primitive can be generated with any stream.

Current hardware support: AMD Southern Islands

7.5. GL_AMD_transform_feedback4

AMD_transform_feedback4 extends AMD_transform_feedback3_lines_triangles so that each stream can
be rendered in a single draw even if the geometry shader output different type of primitives for each
stream.

Hence, this extension allows rendering a single primitive both filled and in wireframe within a single
draw.

Current hardware support: AMD Southern Islands

7.6. GL_AMD_occlusion_query_event

OpenGL provides occlusion queries to count the number of fragments that pass the tests. This extension
provides finer queries to determine the number of fragments that pass specific tests.

GL_QUERY_DEPTH_PASS_EVENT_BIT_AMD Indicates that the fragment passed all tests
GL_QUERY_DEPTH_FAIL_EVENT_BIT_AMD Indicates that the fragment passed the depth

bounds and stencil tests, but failed the depth test
GL_QUERY_STENCIL_FAIL_EVENT_BIT_AMD Indicates that the fragment passed the depth

bounds test but failed the stencil test

http://www.opengl.org/sdk/docs/man/html/gl_Layer.xhtml
http://www.opengl.org/sdk/docs/man/html/gl_Layer.xhtml
http://www.opengl.org/registry/specs/AMD/vertex_shader_layer.txt
http://www.opengl.org/sdk/docs/man/html/gl_Layer.xhtml
http://www.opengl.org/registry/specs/AMD/vertex_shader_viewport_index.txt
http://www.opengl.org/registry/specs/AMD/vertex_shader_layer.txt
http://www.opengl.org/sdk/docs/man/html/gl_ViewportIndex.xhtml
http://www.opengl.org/registry/specs/AMD/transform_feedback3_lines_triangles.txt
http://www.opengl.org/registry/specs/AMD/transform_feedback3_lines_triangles.txt
http://www.opengl.org/registry/specs/AMD/transform_feedback4.txt
http://www.opengl.org/registry/specs/AMD/transform_feedback4.txt
http://www.opengl.org/registry/specs/AMD/transform_feedback3_lines_triangles.txt
http://www.opengl.org/registry/specs/AMD/occlusion_query_event.txt

GL_QUERY_DEPTH_BOUNDS_FAIL_EVENT_BIT_AMD Indicates that the fragment failed the depth
bounds test

GL_QUERY_ALL_EVENT_BITS_AMD Indicates that any event generated by the
fragment should be counted

Current hardware support: Intel Haswell, AMD Sea Islands

7.7. WGL_AMD_gpu_association and WGL_NV_gpu_affinity

I have never really explored either AMD_gpu_association or NV_gpu_affinity by lack of interest of multi
GPU solution. These extensions enable CrossFire and SLI on AMD and NVIDIA GPUs. Such feature could
probably be standardized into an OpenGL ARB extension. Rendering a frame on one GPU and a second
frame on the other GPU is a pretty relevant scenario for example.

Expected hardware support: OpenGL 3 hardware

http://www.opengl.org/registry/specs/AMD/wgl_gpu_association.txt
http://www.opengl.org/registry/specs/NV/gpu_affinity.txt
http://www.opengl.org/registry/specs/AMD/wgl_gpu_association.txt
http://www.opengl.org/registry/specs/NV/gpu_affinity.txt

8. Hardware rings and tasks parallelism

Graphics APIs such as OpenGL, Mantle or Direct3D12 exposes concepts such as display lists, command
queues and command lists. Exploring hardware specifications, we see a gap between what these APIs
exposed and the hardware architectures even on AMD hardware that is the friendliest to such concepts.
What those feature expose, it is CPU side delayed compilation of states.

Considering command queues such as things that the GPU can execute in parallel is missing leading. On
Southern Islands the GPU Draw Engine (DE) can execute a PM4 packet at a time. A PM4 packet can be
seen as a macro instruction in the CPU world. Southern Islands introduce a new hardware block called
the Constant Engine (CE) which aims at compensating the removal of the fixed hardware register for the
shader resource descriptors. With Southen Islands, the shader resource descriptors are fetched from
memory but cached by the Constant Engine. The Constant Engine has its own hardware ring so that both
the Draw Engine and Constant Engine could execute PM4 packets in parallel. Neither the Draw Engine
nor the Constant Engine can execute all the PM4 packets, each support dedicated subsets. DE and CE
form what we call the Command Processor (CP) but really in Southern Islands it’s two hardware blocks.
Even if both can run in parallel, there are designed for instructions parallelism, not really tasks
parallelism.

Southern Islands has two DMA engines that can do transfers on both directions: from device to client or
from client to device memory. The DMA engines can run fully independently from the command
processor.

Southern Islands also has 2 Asynchronous Compute Engines (ACE). These engines allow efficient multi-
tasking with independent scheduling and workgroup dispatch. These engines can run in parallel with the
Draw Engine without any form of contention. OpenCL 1.2 exposes them with something called device
partitioning. Sea Islands raised the number of ACE to 8.

There is a lot of room for tasks parallelism in a GPU but the idea of submitting draws from multiple
threads in parallel simply doesn’t make any sense from the GPU architectures at this point. Everything
will need to be serialized at some point and if applications don’t do it, the driver will have to do it. This is
true until GPU architectures add support for multiple command processors which is not unrealistic in
the future.

For example, having multiple command processors would allow rendering shadows at the same time as
filling G-Buffers or shading the previous frame. Having such drastically different tasks live on the GPU at
the same time could make a better usage of the GPU as both tasks will probably have different
hardware bottleneck.

Tasks parallelism is interesting as long as the architectures allow load balancing. On AMD Tahiti, there
are 32 execution units and each of them can process independent tasks. However, Tahiti is a high-end
GPU but the lower end parts have a lot less execution units. On mobile GPU, PowerVR GX6650 contains
only 6 execution units despite that it is really high-end on mobile. NVIDIA Kepler uses fat execution units
so that GK104 only has 8 execution units and Tegra K1 only has a single execution unit.

Current hardware support: AMD Southern Islands
Expected hardware support: Future hardware

Conclusions

I think we are going toward the convergence of the tile-based GPUs and the immediate mode GPUs. It’s
also particularly interesting to see architecture innovations coming from everywhere including both the
desktop and mobile worlds. Few years ago, innovations would comes from either AMD or NVIDIA but
this is long gone: ARM standalized ASTC texture format, Intel introduced fragment shader invocation
ordering and I haven’t even mentioned Imagination Technologies raytracing hardware for PowerVR 6
XT.

On current immediate mode hardware, it already makes a lot of sense to do tile based image
computation like shading or data binning. On current tile based GPUs, it makes a lot of sense to enable
programmable vertex pulling to ensure that the meshes will be process at fine granularity and with
screen space coherence to avoid flushing on-chip memory to graphics memory.

I expect that future hardware will converge with both worlds moving toward each other. First, by
enabling a full programmable vertex pulling allowing the GPUs to submit itself a lot of small draws with
MultiDrawIndirect and executing significantly different shader code path per fine grain draws. Second,
by introducing a tile shader stage used for a fully programmable blending allowing single pass deferred
rendering, order-independent transparency or immediate antialiasing resolution for a massive
bandwidth saving.

Could the OpenGL 5 hardware level be that fully programmable vertex pulling and programmable
blending GPU architecture? Considering that is takes about three years to build a GPU, such architecture
would have to already in the production pipeline of IHVs. That seems unlikely but it could be a nice
OpenGL 6 hardware level.

Personnally, I would be happy with Southern Islands being used to define the OpenGL 5 hardware level
and call the day. Southern Islands is the botton line for the new consoles hence a target for a large
number of people for the years to come and it’s amazingly documented. Hence, an OpenGL 5 hardware
would have to support and expose:

- Hardware accelerated MultiDrawIndirect
- Per-draw shader code path in a multi draw (As a bonus, not sure that’s possible on S.I.)
- Bindless / unlimited number of ressources
- Virtual memory for sparse ressources
- Two fully asynchronous DMA engines for upload and download
- Fragment shader invocation ordering

Thanks to Patrick Cozzi for the review of this article.

https://software.intel.com/sites/default/files/m/d/4/1/d/8/lauritzen_deferred_shading_siggraph_2010.pdf
http://www.chrisoat.com/papers/EfficientSpatialBinning.pdf
http://www.seas.upenn.edu/~pcozzi/

References

Jon Leech, The OpenGL® Graphics System: A Specification (Version 4.4 (Core Profile) - March 19, 2014)
http://www.opengl.org/registry/doc/glspec44.core.withchanges.pdf

John Kessenich, The OpenGL® Shading Language, Language Version: 4.40, Junuary 2014
http://www.opengl.org/registry/doc/GLSLangSpec.4.40.diff.pdf

Sascha Willems, OpenGL hardware database
http://delphigl.de/glcapsviewer/listreports2.php

Sascha Willems, OpenGL ES hardware database
http://delphigl.de/glcapsviewer/gles_launchpad.php

Christophe Riccio, OpenGL hardware matrix, Extensions exposed by OpenGL implementations, February
2014, http://www.g-truc.net/doc/OpenGL%20matrix%202014-02.pdf

Parallel Thread Execution ISA Version 4.0, February 2014
http://docs.nvidia.com/cuda/pdf/ptx_isa_4.0.pdf

Radeon Southern Islands Acceleration, April 2012
http://www.x.org/docs/AMD/old/si_programming_guide_v2.pdf

Southern Islands Series Instruction Set Architecture, August 2012
www.x.org/docs/AMD/old/AMD_Southern_Islands_Instruction_Set_Architecture.pdf

Radeon Southern Islands 3D/Compute Register Reference Guide, November 2011
http://www.x.org/docs/AMD/old/SI_3D_registers.pdf

Radeon Sea Islands 3D/Compute Register Reference Guide, September 2012
http://www.x.org/docs/AMD/old/CIK_3D_registers_v2.pdf

AMD Graphics Cores Next (GCN) Architecture, June 2012
http://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf#search=GCN%5FArchitecture%5F
whitepaper

GPU Overview (Haswell), January 2014,
https://01.org/linuxgraphics/sites/default/files/documentation/intel-gfx-prm-osrc-hsw-gpu-
overview_0.pdf

3D Media GPGPU Engine (Haswell), January 2014,
https://01.org/linuxgraphics/sites/default/files/documentation/intel-gfx-prm-osrc-hsw-3d-media-
gpgpu-engine_0.pdf

Developer’s Guide for Intel® Processor Graphics For 4th Generation Intel® Core™ Processors,
https://software.intel.com/sites/default/files/4th-gen-core-graphics-dev-guide.pdf

http://www.opengl.org/registry/doc/glspec44.core.withchanges.pdf
http://www.saschawillems.de/
http://delphigl.de/glcapsviewer/listreports2.php
http://www.saschawillems.de/
http://docs.nvidia.com/cuda/pdf/ptx_isa_4.0.pdf
http://www.x.org/docs/AMD/old/SI_3D_registers.pdf
https://software.intel.com/sites/default/files/4th-gen-core-graphics-dev-guide.pdf

