Effective OpenGL

http://www.g-truc.net/doc/Effective%20OpenGL.pdf
https://twitter.com/g_truc
http://www.g-truc.net

Table of Contents

. Cross platform support

. Internal texture formats

. Configurable texture swizzling

. BGRA texture swizzling using texture formats
. Texture alpha swizzling

. Half type constants

. Color read format queries

. SRGB texture

. SRGB framebuffer object

O 00 N O U1 A W N = O

. SRGB default framebuffer

10. sRGB framebuffer blending precision

11. Compressed texture internal format support
12. Sized texture internal format support

13. Surviving without gl_DrawlID

14. Cross architecture control of framebuffer restore and resolve to save bandwidth
15 Building platform specific code paths

16 Max texture sizes

17 Hardware compression format support

18 Draw buffers differences between APIs

19 i0S OpenGL ES extensions

20 Asynchronous pixel transfers

Change log

O 00 N O U1 &~ W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Initially released on January 1992, OpenGL has a long history which led to many versions; market specific variations such
as OpenGL ES in July 2003 and WebGL in 2011; a backward compatibility break with OpenGL core profile in August 2009;
and many vendor specifics, multi vendors (EXT), standard (ARB, OES), and cross APl extensions (KHR).

OpenGL is massively cross platform but it doesn’t mean it comes automagically. Just like C and C++ languages, it allows
cross platform support but we have to work hard for it. The amount of work depends on the range of the application-
targeted market. Across vendors? Eg: AMD, ARM, Intel, NVIDIA, PowerVR and Qualcomm GPUs. Across hardware
generations? Eg: Tesla, Fermi, Kepler, Maxwell and Pascal architectures. Across platforms? Eg: macOS, Linux and Windows
or Android and iOS. Across languages? Eg: C with OpenGL ES and Javascript with WebGL.

Before the early 90s, vendor specific graphics APls were the norm driven by hardware vendors. Nowadays, vendor specific
graphics APIs are essentially business decisions by platform vendors. For example, in my opinion, Metal is design to lock
developers to the Apple ecosystem and DirectX 12 is a tool to force users to upgrade to Windows 10. Only in rare cases,
such as Playstation libgnm, vendor specific graphics APIs are actually designed for providing better performance.

Using vendor specific graphics APIs leads applications to cut themselves out a part of a possible market share. Metal or
DirectX based software won’t run on Android or Linux respectively. However, this might be just fine for the purpose of the
software or the company success. For example, PC gaming basically doesn’t exist outside of Windows, so why bothering
using another APl than DirectX? Similarly, the movie industry is massively dominated by Linux and NVIDIA GPUs so why
not using OpenGL like a vendor specific graphics API? Certainly, vendor extensions are also designed for this purpose. For
many software, there is just no other choice than supporting multiple graphics APls.

Typically, minor platforms rely on OpenGL APIls because of platform culture (Linux, Raspberry Pi, etc) or because they
don’t have enough weight to impose their own APIs to developers (Android, Tizen, Blackberry, SamsungTV, etc). Not using
standards can lead platform to failure because the developer entry cost to the platform is too high. An example might be
Windows Phone. However, using standards don’t guarantee success but at least developers can leverage previous work
reducing platform support cost.

In many cases, the multiplatform design of OpenGL is just not enough because OpenGL support is controlled by the
platform vendors. We can identify at least three scenarios: The platform owner doesn’t invest enough on its platform; the
platform owner want to lock developers to its platform; the platform is the bread and butter of the developers.

On Android, drivers are simply not updated on any devices but the ones from Google and NVIDIA. Despite, new versions
of OpenGL ES or new extensions being released, these devices are never going to get the opportunity to expose these new
features let alone getting drivers bug fixes. Own a Galaxy S7 for its Vulkan support? #lol. This scenario is a case of lack of
investment in the platform, after all, these devices are already sold so why bother?

Apple made the macOS OpenGL 4.1 and iOS OpenGL ES 3.0 drivers which are both crippled and outdated. For example,
this result in no compute shader available on macOS or iOS with OpenGL/ES. GPU vendors have OpenGL/ES drivers with
compute support, however, they can’t make their drivers available on macOS or iOS due to Apple control. As a result, we
have to use Metal on macOS and iOS for compute shaders. Apple isn’t working at enabling compute shader onits platforms
for a maximum of developers; it is locking developers to its platforms using compute shaders as a leverage. These forces
are nothing new: Originally, Windows Vista only supported OpenGL through Direct3D emulation...

Finally, OpenGL is simply not available on some platform such as Playstation 4. The point is that consoles are typically the
bread and butter of millions budgets developers which will either rely on an exist engine or implement the graphics API
as a marginal cost, because the hardware is not going to move for years, for the benefit of an API cut for one ASIC and one
system.

This document is built from experiences with the OpenGL ecosystem to ship cross-platform software. It is designed to
assist the community to use OpenGL functionalities where we need them within the complex graphics APls ecosystem.

https://www.opengl.org/wiki/History_of_OpenGL
https://github.com/kripken/emscripten/wiki
https://twitter.com/id_aa_carmack/status/575693181519429633?lang=en
https://www.google.com/nexus/
https://shield.nvidia.com/

OpenGL expresses the texture format through the internal format and the external format, which is composed of the
format and the type as glTexImage2D declaration illustrates:

glTexImage2D(GLenum target, GLint level,
GLint internalformat, GLsizei width, GLsizei height, GLint border,
GLenum format, GLenum type, const void* pixels);

Listing 1.1: Internal and external formats using glTexImage2D

The internal format is the format of the actual storage on the device while the external format is the format of the client
storage. This API design allows the OpenGL driver to convert the external data into any internal format storage.

However, while designing OpenGL ES, the Khronos Group decided to simplify the design by forbidding texture
conversionsE2section 3.7.1) an(g]lowing the actual internal storage to be platform dependent to ensure a larger hardware
ecosystem support. As a result, it is specified in OpenGL ES 2.0 that the internalformat argument must match the format
argument.

glTexImage2D(GL_TEXTURE_2D, O, GL_RGBA, Width, Height, @, GL_RGBA, GL_UNSIGNED_BYTE, Pixels);
Listing 1.2: OpenGL ES loading of a RGBA8 image

This approach is also supported by OpenGL compatibility profile however it will generate an OpenGL error with OpenGL
core profile which requires sized internal formats.

glTexImage2D(GL_TEXTURE_2D, O, GL_RGBA8, Width, Height, @, GL_RGBA, GL_UNSIGNED_BYTE, Pixels);
Listing 1.3: OpenGL core profile and OpenGL ES 3.0 loading of a RGBA8 image

Additionally, texture storage (GL 4.2 / GL_ARB_texture storage and ES 3.0 / GL_EXT texture storage) requires using sized
internal formats as well.

glTexStorage2D(GL_TEXTURE_2D, 1, GL_RGBA8, Width, Height);
glTexSubImage2D(GL_TEXTURE_2D, @, ©, ©, Width, Height, GL_RGBA, GL_UNSIGNED_BYTE, Pixels);
Listing 1.4: Texture storage allocation and upload of a RGBA8 image

Sized internal format support:

e Texture storage API

e OpenGL core and compatibility profile
e OpenGLES3.0

o WebGL2.0

Unsized internal format support:

e OpenGL compatibility profile
e OpenGLES
o WebGL

https://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.withchanges.pdf
https://www.opengl.org/registry/specs/ARB/texture_storage.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_storage.txt

OpenGL provides a mechanism to swizzle the components of a texture before returning the samples to the shader. For
example, it allows loading a BGRA8 or ARGBS client texture to OpenGL RGBAS texture object without a reordering of the
CPU data.

Introduced with GL EXT texture swizzle, this functionally was promoted to OpenGL 3.3 specification
through GL_ARB texture swizzle extension and included in OpenGL ES 3.0.

With OpenGL 3.3 and OpenGL ES 3.0, loading a BGRAS8 texture is done using the following approach shown in listing 2.1.

GLint const Swizzle[] = {GL_BLUE, GL_GREEN, GL_RED, GL_ALPHA};

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_ R, Swizzle[0]);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_G, Swizzle[1]);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_B, Swizzle[2]);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_A, Swizzle[3]);

glTexImage2D(GL_TEXTURE_2D, O, GL_RGBA8, Width, Height, @, GL_RGBA, GL_UNSIGNED_BYTE, Pixels);
Listing 2.1: OpenGL 3.3 and OpenGL ES 3.0 BGRA texture swizzling, a channel at a time

Alternatively, OpenGL 3.3, GL_ARB texture swizzle and GL_EXT texture swizzle provide a slightly different approach to
setup all components at once as shown in listing 2.2.

GLint const Swizzle[] = {GL_BLUE, GL_GREEN, GL_RED, GL_ALPHA};

glTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_RGBA, Swizzle);

glTexImage2D(GL_TEXTURE_2D, O, GL_RGBA8, Width, Height, ©, GL_RGBA, GL_UNSIGNED_BYTE, Pixels);
Listing 2.2: OpenGL 3.3 BGRA texture swizzling, all channels at once:

Unfortunately, neither WebGL 1.0 or WebGL 2.0 support texture swizzle due to the performance impact that
implementing such feature on top of Direct3D would have.

Support:

e Any OpenGL 3.3 or OpenGL ES 3.0 driver
e MacOSX 10.8 through GL_ARB texture swizzle using the OpenGL 3.2 core driver
e Intel SandyBridge through GL_EXT texture swizzle

https://www.opengl.org/registry/specs/EXT/texture_swizzle.txt
https://www.opengl.org/registry/specs/ARB/texture_swizzle.txt
https://www.opengl.org/registry/specs/ARB/texture_swizzle.txt
https://www.opengl.org/registry/specs/EXT/texture_swizzle.txt
https://www.khronos.org/registry/webgl/specs/latest/2.0/#5.18
https://developer.apple.com/opengl/capabilities/GLInfo_1085_Core.html
https://www.opengl.org/registry/specs/ARB/texture_swizzle.txt
http://opengl.gpuinfo.org/gl_listreports.php?listreportsbyextension=GL_EXT_texture_swizzle
https://www.opengl.org/registry/specs/EXT/texture_swizzle.txt

OpenGL supports GL_BGRA external format to load BGRA8 source textures without requiring the application to swizzle the
client data. This is done using the following code:

glTexImage2D(GL_TEXTURE_2D, @, GL_RGBA8, Width, Height, @, GL_BGRA, GL_UNSIGNED_BYTE, Pixels);
Listing 3.1: OpenGL core and compatibility profiles BGRA swizzling with texture image

glTexStorage2D(GL_TEXTURE_2D, 1, GL_RGBA8, Width, Height);
glTexSubImage2D(GL_TEXTURE_2D, @, ©, ©, Width, Height, GL_BGRA, GL_UNSIGNED BYTE, Pixels);
Listing 3.2: OpenGL core and compatibility profiles BGRA swizzling with texture storage

This functionality isn't available with OpenGL ES. While, it's not useful for OpenGL ES 3.0 that has texture swizzling support,
OpenGL ES 2.0 relies on some extensions to expose this feature however it exposed differently than OpenGL because by
design, OpenGL ES doesn’t support format conversions including component swizzling.

Using the GL_EXT texture format BGRA8888 or GL APPLE texture format BGRA8888 extensions, loading BGRA textures is
done with the code in listing 3.3.

glTexImage2D(GL_TEXTURE_2D, 0, GL_BGRA_EXT, Width, Height, @, GL_BGRA_EXT, GL_UNSIGNED_BYTE, Pixels);
Listing 3.3: OpenGL ES BGRA swizzling with texture image

Additional when relying on GL_EXT_texture_storage (ES2), BGRA texture loading requires sized internal format as shown
by listing 3.4.

glTexStorage2D(GL_TEXTURE_2D, 1, GL_BGRA8_EXT, Width, Height);
glTexSubImage2D(GL_TEXTURE_2D, ©, 0, @, Width, Height, GL_BGRA, GL_UNSIGNED_ BYTE, Pixels);
Listing 3.4: OpenGL ES BGRA swizzling with texture storage

Support:

e Any driver supporting OpenGL 1.2 or GL_EXT_bgra including OpenGL core profile

e Adreno 200, Mali 400, PowerVR series 5, Tegra 3, Videocore 1V and GC1000 through
GL EXT texture format BGRAS888

e (0S4 and GC1000 through GL_APPLE texture format BGRA8888
e PowerVR series 5 through GL IMG texture format BGRAS888

https://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_format_BGRA8888.txt
https://www.khronos.org/registry/gles/extensions/APPLE/APPLE_texture_format_BGRA8888.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_storage.txt
http://delphigl.de/glcapsviewer/gl_listreports.php?listreportsbyextension=GL_EXT_bgra
http://delphigl.de/glcapsviewer/gles_listreports.php?extension=GL_EXT_texture_format_BGRA8888
http://delphigl.de/glcapsviewer/gles_listreports.php?extension=GL_EXT_texture_format_BGRA8888
https://developer.apple.com/library/ios/documentation/DeviceInformation/Reference/iOSDeviceCompatibility/OpenGLESPlatforms/OpenGLESPlatforms.html
http://delphigl.de/glcapsviewer/gles_listreports.php?extension=GL_IMG_texture_format_BGRA8888

In this section, we call a texture alpha, a single component texture which data is accessed in the shader with the alpha
channel (.3, .w, .q).

With OpenGL compatibility profile, OpenGL ES and WebGL, this can be done by creating a texture with an alpha format as
demonstrated in listings 4.1 and 4.2.

glTexImage2D(GL_TEXTURE_2D, O, GL_ALPHA, Width, Height, @, GL_ALPHA, GL_UNSIGNED_BYTE, Data);
Listing 4.1: Allocating and loading an OpenGL ES 2.0 texture alpha

glTexStorage2D(GL_TEXTURE_2D, 1, GL_ALPHA8, Width, Height);
glTexSubImage2D(GL_TEXTURE_2D, @, @, @, Width, Height, GL_ALPHA, GL_UNSIGNED_BYTE, Data);
Listing 4.2: Allocating and loading an OpenGL ES 3.0 texture alpha

Texture alpha formats have been removed in OpenGL core profile. An alternative is to rely on rg_texture formats and
texture swizzle as shown by listings 4.3 and 4.4.

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_R, GL_ZERO);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_G, GL_ZERO);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_B, GL_ZERO);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_A, GL_RED);
glTexImage2D(GL_TEXTURE_2D, @, GL_R8, Width, Height, @, GL_RED, GL_UNSIGNED_BYTE, Data);
Listing 4.3: OpenGL 3.3 and OpenGL ES 3.0 texture alpha

Texture red format was introduced on desktop with OpenGL 3.0 and GL_ARB texture rg. On OpenGL ES, it was introduced
with OpenGL ES 3.0 and GL_EXT texture rg. It is also supported by WebGL 2.0.

Unfortunately, OpenGL 3.2 core profile doesn't support either texture alpha format or texture swizzling. A possible
workaround is to expend the source data to RGBA8 which consumes 4 times the memory but is necessary to support
texture alpha on MacOSX 10.7.

Support:

e Texture red format is supported on any OpenGL 3.0 or OpenGL ES 3.0 driver

e Texture red format is supported on PowerVR series 5, Mali 600 series, Tegra and Bay Trail on Android through
GL EXT texture rg
e Texture red format is supported on iOS through GL EXT texture rg

https://www.opengl.org/registry/specs/ARB/texture_rg.txt
https://www.opengl.org/registry/specs/ARB/texture_rg.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_rg.txt
https://developer.apple.com/opengl/capabilities/GLInfo_1075_Core.html
http://delphigl.de/glcapsviewer/listreports2.php?listreportsbyextension=GL_ARB_texture_rg
http://delphigl.de/glcapsviewer/gles_listreports.php?extension=GL_EXT_texture_rg
https://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_rg.txt
http://delphigl.de/glcapsviewer/gles_listreports.php?extension=GL_EXT_texture_rg
https://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_rg.txt

Half-precision floating point data was first introduced by GL NV half float for vertex attribute data and exposed using
the constant GL_HALF_FLOAT_NV whose value is 0x140B.

This extension was promoted to GL_ARB_half float vertex renaming the constant to GL_HALF_FLOAT_ARB but keeping the
same @x140B value. This constant was eventually reused for GL ARB half float pixel, GL ARB texture float and
promoted to OpenGL 3.0 core specification with the name GL_HALF_FLOAT and the same ox14eB value.

Unfortunately, GL_OES texture float took a different approach and exposed the constant GL_HALF_FLOAT_OES with the
value ex8D61. However, this extension never made it to OpenGL ES core specification as OpenGL ES 3.0 reused the OpenGL
3.0 value for GL_HALF_FLOAT. GL_OES texture float remains particularly useful for OpenGL ES 2.0 devices and WebGL 1.0
which also has a WebGL flavor of GL_OES texture float extension.

Finally, just like regular RGBA8 format, OpenGL ES 2.0 requires an unsized internal format for floating point formats. Listing
5.1 shows how to correctly setup the enums to create a half texture across APIs.

GLenum const Type = isES20 || isWebGL1@ ? GL_HALF_FLOAT OES : GL_HALF_FLOAT;
GLenum const InternalFormat = isES20 || isWebGL1@ ? GL_RGBA : GL_RGBA16F;

// Allocation of a half storage texture image
glTexImage2D(GL_TEXTURE_2D, @, InternalFormat, Width, Height, ©, GL_RGBA, Type, Pixels);

// Setup of a half storage vertex attribute
glVertexAttribPointer(POSITION, 4, Type, GL_FALSE, Stride, Offset);
Listing 5.1: Multiple uses of half types with OpenGL, OpenGL ES and WebGL

Support:

e All OpenGL 3.0 and OpenGL ES 3.0 implementations
e OpenGLES 2.0 and WebGL 1.0 through GL_OES texture float extensions

https://www.opengl.org/registry/specs/NV/half_float.txt
https://www.opengl.org/registry/specs/ARB/half_float_vertex.txt
https://www.opengl.org/registry/specs/ARB/half_float_pixel.txt
https://www.opengl.org/registry/specs/ARB/texture_float.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_texture_float.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_texture_float.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_texture_float.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_texture_float.txt

OpenGL allows reading back pixels on the CPU side using glReadPixels. OpenGL ES provides implementation dependent
formats queries to figure out the external format to use for the current read framebuffer. For OpenGL ES compatibility,
these queries were added to OpenGL 4.1 core specification with GL_ARB_ES2 compatibility. When the format is expected
to represent half data, we may encounter the enum issue discussed in section 5 in a specific corner case.

To work around this issue, listing 6.1 proposes to check always for both GL_HALF_FLOAT and GL_HALF_FLOAT_OES even when
only targeting OpenGL ES 2.0.

GLint ReadType = DesiredType;

GLint ReadFormat = DesiredFormat;

if(HasImplementationColorRead)

{
glGetIntegerv(GL_IMPLEMENTATION_COLOR_READ_TYPE, &ReadType);
glGetIntegerv(GL_IMPLEMENTATION_COLOR_READ_FORMAT, &ReadFormat);

}

std::size_t ReadTypeSize = 0;
switch(ReadType){
case GL_FLOAT:
ReadTypeSize = 4; break;
case GL_HALF_FLOAT:
case GL_HALF_FLOAT_OES:
ReadTypeSize = 2; break;
case GL_UNSIGNED BYTE:
ReadTypeSize = 1; break;
default: assert(0);
}

std::vector<unsigned char> Pixels;
Pixels.resize(components(ReadFormat) * ReadTypeSize * Width * Height);

glReadPixels (@, @, Width, Height, ReadFormat, ReadType, &Pixels[0@]);
Listing 6.1: OpenGL ES 2.0 and OpenGL 4.1 color read format

Many OpenGL ES drivers don’t actually support OpenGL ES 2.0 anymore. When we request an OpenGL ES 2.0 context, we
get a context for the latest OpenGL ES version supported by the drivers. Hence, these OpenGL ES implementations, queries
will always return GL_HALF_FLOAT.

Support:

e All OpenGL 4.1, OpenGL ES 2.0 and WebGL 1.0 implementations supports read format queries
e All OpenGL implementations will perform a conversion to any desired format

https://www.opengl.org/registry/specs/ARB/ES2_compatibility.txt

sRGB texture is the capability to perform sRGB to linear conversions while sampling a texture. It is a very useful feature
for linear workflows.

SRGB textures have been introduced to OpenGL with GL_EXT texture sRGB extensions later promoted to OpenGL 2.1
specification. With OpenGL ES, it was introduced with GL_EXT sRGB which was promoted to OpenGL ES 3.0 specification.

Effectively, this feature provides an internal format variation with sRGB to linear conversion for some formats: GL_RGB8 =>
GL_SRGBS ; GL_RGBA8 => GL_SRGBS_ALPHAS.

The alpha channel is expected to always store linear data, as a result, SRGB to linear conversions are not performed on
that channel.

OpenGL ES supports one and two channels sRGB formats through GL_EXT texture sRGB R8 and GL_EXT texture sRGB RGS
but these extensions are not available with OpenGL. However, OpenGL compatibility profile supports GL_SLUMINANCES for
single channel sRGB texture format.

Why not storing directly linear data? Because the non-linear property of SRGB allows increasing the resolution where it
matters more of the eyes. Effectively, SRGB formats are trivial compression formats. Higher bit-rate formats are expected
to have enough resolution that no sRGB variations is available.

Typically, compressed formats have sRGB variants that perform sRGB to linear conversion at sampling. These variants are
introduced at the same time than the compression formats are introduced. This is the case for BPTC, ASTC and ETC2,
however for older compression formats the situation is more complex.

GL_EXT pvrtc_sRGB defines PVRTC and PVRTC2 sRGB variants. ETC1 doesn’t have a sRGB variations but GL_ETC1_RGB8_OES
is equivalent to GL_COMPRESSED_RGB8_ETC2, despite wusing different values, which sRGB variation s
GL_COMPRESSED_SRGB8_ETC2.

For S3TC, the sRGB variations are defined in GL_EXT texture sRGB that is exclusively an OpenGL extension. With OpenGL
ES, only GL_NV_sRGB formats exposed sRGB S3TC formats despite many hardware, such as Intel GPUs, being capable. ATC
doesn’t have any sRGB support.

Support:

e All OpenGL 2.1, OpenGL ES 3.0 and WebGL 2.0 implementations

SRGB R8 is supported by PowerVR 6 and Adreno 400 GPUs on Android

SRGB RG8 is supported by PowerVR 6 on Android

Adreno 200, GCXXX, Mali 4XX, PowerVR 5 and Videocore IV doesn’t support sRGB textures
WebGL doesn’t exposed sRGB S3TC, only Chrome exposes GL_EXT sRGB

Known bugs:

e Intel OpenGL ES drivers (4352) doesn’t expose sRGB S3TC formats while it’s supported
e NVIDIA ES drivers (355.00) doesn’t list SRGB S3TC formats with GL_COMPRESSED_TEXTURE_FORMATS query
e AMD driver (16.7.1) doesn’t perform sRGB conversion on texelFetch[Offset] functions

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch24.html
https://www.opengl.org/registry/specs/EXT/texture_sRGB.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_sRGB.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_sRGB_R8.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_sRGB_RG8.txt
https://www.opengl.org/registry/specs/ARB/texture_compression_bptc.txt
https://www.opengl.org/registry/specs/KHR/texture_compression_astc_hdr.txt
https://www.opengl.org/registry/specs/ARB/ES3_compatibility.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_pvrtc_sRGB.txt
https://www.khronos.org/registry/gles/extensions/IMG/IMG_texture_compression_pvrtc.txt
https://www.khronos.org/registry/gles/extensions/IMG/IMG_texture_compression_pvrtc2.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_compressed_ETC1_RGB8_texture.txt
https://www.opengl.org/registry/specs/EXT/texture_sRGB.txt
https://www.khronos.org/registry/gles/extensions/NV/NV_sRGB_formats.txt
GL_AMD_compressed_ATC_texture
https://www.khronos.org/registry/gles/extensions/EXT/EXT_sRGB.txt

sRGB framebuffer is the capability of converting from linear to sRGB on framebuffer writes and reading converting from
SsRGB to linear on framebuffer read. It requires sRGB textures used as framebuffer color attachments and only apply to
the sRGB color attachments. It is a very useful feature for linear workflows.

sRGB framebuffers have been introduced to OpenGL with GL_EXT framebuffer sRGB extension later promoted to
GL_ARB framebuffer sRGB extension and into OpenGL 2.1 specification. On OpenGL ES, the functionality was introduced
with GL_EXT sRGB which was promoted to OpenGL ES 3.0 specification.

OpenGL and OpenGL ES sRGB framebuffer have few differences. With OpenGL ES, framebuffer sRGB conversion is
automatically performed for framebuffer attachment using sRGB formats. With OpenGL, framebuffer sRGB conversions
must be explicitly enabled:

glEnable(GL_FRAMEBUFFER_SRGB)

OpenGL ES has the GL_EXT _sRGB write control extension to control the sRGB conversion however a difference remains:
With OpenGL, framebuffer sRGB conversions are disabled by default while on OpenGL ES sRGB conversions are enabled
by default.

WebGL 2.0 supports sRGB framebuffer object. However, WebGL 1.0 has very limited support through GL_EXT_sRGB which
is only implemented by Chrome to date.

A possibility workaround is to use a linear format framebuffer object, such as GL_RGBA16F, and use a linear to sSRGB shader
to blit results to the default framebuffer. With this is a solution to allow a linear workflow, the texture data needs to be
linearized offline. HDR formats are exposed in WebGL 1.0 by GL OES texture half float and GL OES texture float
extensions.

With WebGL, there is no equivalent for OpenGL ES GL_EXT_sRGB write control.

Support:

e All OpenGL 2.1+, OpenGL ES 3.0 and WebGL 2.0 implementations
e GL EXT sRGB is supported by Adreno 200, Tegra, Mali 60, Bay Trail
e GL EXT sRGB is supported by WebGL 1.0 Chrome implementations
e GL EXT sRGB write control is supported by Adreno 300, Mali 600, Tegra and Bay Trail

Bugs:

e (0SX 10.8 and older with AMD HD 6000 and older GPUs have a bug where sRGB conversions are performed even
on linear framebuffer attachments if GL_FRAMEBUFFER_SRGB is enabled

References:

e The sRGB Learning Curve
e The Importance of Terminology and sRGB Uncertainty

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch24.html
https://www.opengl.org/registry/specs/EXT/framebuffer_sRGB.txt
https://www.opengl.org/registry/specs/ARB/framebuffer_sRGB.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_sRGB.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_sRGB_write_control.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_sRGB.txt
http://webglstats.com/
https://www.khronos.org/registry/webgl/extensions/OES_texture_half_float/
https://www.khronos.org/registry/webgl/extensions/OES_texture_float/
https://www.khronos.org/registry/gles/extensions/EXT/EXT_sRGB_write_control.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_sRGB_write_control.txt
http://opengles.gpuinfo.org/gles_listreports.php?extension=GL_EXT_sRGB_write_control
https://gamedevdaily.io/the-srgb-learning-curve-773b7f68cf7a#.tiu5uncvx
https://gamedevdaily.io/the-srgb-learning-curve-773b7f68cf7a#.tiu5uncvx
http://www.slideshare.net/thomasmansencal/the-importance-of-terminology-and-srgb-uncertainty-notes

While sRGB framebuffer object is pretty straightforward, sRGB default framebuffer is pretty complex. This is partially due
to the interaction with the window system but also driver behaviors inconsistencies that is in some measure the
responsibility of the specification process.

On Windows and Linux, sSRGB default framebuffer is exposed by [WGL|GLX] EXT framebuffer sRGB extensions for AMD and
NVIDIA implementations but on |Intel and Mesa implementations, it is exposed by the promoted
[WGL|GLX] ARB framebuffer sRGB extensions... which text never got written...

In theory, these extensions provide two functionalities: They allow performing sRGB conversions on the default
framebuffer and provide a query to figure out whether the framebuffer is SRGB capable as shown in listing 9.1 and 9.2.

glGetIntegerv(GL_FRAMEBUFFER_SRGB_CAPABLE_EXT, &sRGBCapable);
Listing 9.1: Using [WGL | GLX]_EXT_framebuffer_sRGB, is the default framebuffer sRGB capable?

glGetFramebufferAttachmentParameteriv(
GL_DRAW_FRAMEBUFFER, GL_BACK_LEFT,
GL_FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING, &Encoding);
Listing 9.2: Using [WGL | GLX]_ARB_framebuffer_sRGB, is the default framebuffer sRGB capable?

AMD and NVIDIA drivers support the approach from listing 9.2 but regardless the approach, AMD drivers claims the default
framebuffer is SRGB while NVIDIA drivers claims it’s linear. Intel implementation simply ignore the query. In practice, it's
better to simply not rely on the queries, it’s just not reliable.

All OpenGL implementations on desktop perform sRGB conversions when enabled with glEnable(GL_FRAMEBUFFER_SRGB)
on the default framebuffer.

The main issue is that with Intel and NVIDIA OpenGL ES implementation on desktop, there is simply no possible way to
trigger the automatic sRGB conversions on the default framebuffer. An expensive workaround is to do all the rendering
into a linear framebuffer object and use an additional shader pass to manually performance the final linear to sRGB
conversion. A possible format is GL_RGB10A2 to maximum performance when the alpha channel is not useful and when we
accept a slight loss of precision (SRGB has the equivalent of up to 12-bit precision for some values). Another option is
GL_RGBA16F with a higher cost but which can come for nearly free with HDR rendering.

EGL has the EGL_KHR gl colorspace extension to explicitly specify the default framebuffer colorspace. This is exactly what
we need for CGL, WGL and GLX. HTML5 canvas doesn’t support color space but there is a proposal.

Bugs:

e Intel OpenGL ES drivers (4331) GL_FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING query is ignored

e NVIDIA drivers (368.22) returns GL_LINEAR with GL_FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING query on the
default framebuffer but perform sRGB conversions anyway

e With OpenGL ES drivers on WGL (NVIDIA & Intel), there is no possible way to perform sRGB conversions on the
default framebuffer

https://www.opengl.org/registry/specs/EXT/framebuffer_sRGB.txt
http://opengl.gpuinfo.org/gl_listreports.php?listreportsbyextension=WGL_EXT_framebuffer_sRGB
http://opengl.gpuinfo.org/gl_listreports.php?listreportsbyextension=WGL_EXT_framebuffer_sRGB
http://opengl.gpuinfo.org/gl_listreports.php?listreportsbyextension=WGL_ARB_framebuffer_sRGB
http://opengl.gpuinfo.org/gl_listreports.php?listreportsbyextension=GLX_ARB_framebuffer_sRGB
https://www.opengl.org/registry/specs/ARB/framebuffer_sRGB.txt
https://www.opengl.org/registry/specs/EXT/framebuffer_sRGB.txt
https://www.opengl.org/registry/specs/ARB/framebuffer_sRGB.txt
https://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_gl_colorspace.txt
https://github.com/junov/CanvasColorSpace/blob/master/CanvasColorSpaceProposal.md

sRGB8 format allows a different repartition of the precisions on a RGB8 storage. Peak precision is about 12bits on small
values but this is at the cost of only 6bits precision on big values. SRGB8 provides a better precision where it matters the
most for the eyes sensibility and tackle perfectly some use cases just particle systems rendering. While rendering particle
systems, we typically accumulate many small values which sRGB8 can represent with great precisions. RGB10A2 also has
great RGB precision however a high precision alpha channel is required for soft particles.

To guarantee that the framebuffer data precision is preserved during blending, OpenGL has the following language:
“Blending computations are treated as if carried out in floating-point, and will be performed with a precision and
dynamic range no lower than that used to represent destination components.”

OpenGL 4.5 - 17.3.6.1 Blend Equation / OpenGL ES 3.2 - 15.1.5.1 Blend Equation

Unfortunately, figure 10.1 shows that NVIDIA support of sSRGB blending is really poor.

RGB8 blending on AMD C.I. RGB8 blending on Intel Haswell RGB8 blending on NV Maxwell
sRGB8 blending on AMD C.I. sRGB8 blending on Intel Haswell sRGB8 blending on NV Maxwell

Figure 10.1: Blending precision experiment: Rendering with lot of blended point sprites.
Outer circle uses very small alpha values; inner circle uses relative big alpha values.

Tile based GPUs typically perform blending using the shader core ALUs avoiding the blending precision concerns.

Bug:

e NVIDIA drivers (368.69) seem to crop sRGB framebuffer precision to 8 bit linear while performing blending

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch23.html
http://www.g-truc.net/doc/blend-quality-2016-07.png

OpenGL, OpenGL ES and WebGL provide the queries in listing 11.1 to list the supported compressed texture formats by
the system.

GLint NumFormats = 0;

glGetIntegerv(GL_NUM_COMPRESSED_ TEXTURE_FORMATS, &NumFormats);
std: :vector<GLint> Formats(static_cast<std::size_t>(NumFormats));
glGetIntegerv(GL_COMPRESSED_TEXTURE_FORMATS, &Formats);

Listing 11.1: Querying the list of supported compressed format

This functionality is extremely old and was introduced with GL_ARB_texture compression and OpenGL 1.3 later inherited
by OpenGL ES 2.0 and WebGL 1.0. Unfortunately, drivers support is unreliable on AMD, Intel and NVIDIA implementations
with many compression formats missing. However, traditionally mobile vendors (ARM, Imagination Technologies,
Qualcomm) seems to implement this functionality correctly.

An argument is that this functionality, beside being very convenient, is not necessary because the list of supported
compressed formats can be obtained by checking OpenGL versions and extensions strings. The list of required
compression formats is listed appendix C of the OpenGL 4.5 and OpenGL ES 3.2 specifications. Unfortunately, due to
patent troll, S3TC formats are supported only through extensions. To save time, listing 11.2 summarizes the versions and
extensions to check for each compression format.

Formats OpenGL OpenGL ES

S3TC GL EXT texture compression s3tc GL EXT texture compression s3tc

sRGB S3TC GL EXT texture compression s3tc & GL NV sRGB formats

GL EXT texture sRGB

RGTC1, RGTC2 3.0, GL ARB texture compression rgtc

BPTC 4.2, GL ARB texture compression bptc

ETC1 4.3, GL ARB ES3 compatibility GL OES compressed ETC1 RGB8 texture

ETC2, EAC 4.3, GL ARB ES3 compatibility 3.0

ASTC 2D GL KHR texture compression astc ldr 3.2 GL OES texture compression astc
GL KHR texture compression astc ldr

Sliced ASTC 3D GL KHR texture compression astc sliced 3d

ASTC 3D GL OES texture compression astc

ATC GL AMD compressed ATC texture

PVRTC1 GL IMG texture compression pvrtc

PVRTC2 GL IMG texture compression pvrtc2

SRGB PVRTC 1 & 2 GL EXT pvrtc sRGB

Listing 11.2: OpenGL versions and extensions to check for each compressed texture format.

WebGL 2.0 supports ETC2 and EAC and provides many extensions: WEBGL compressed texture s3tc,
WEBGL compressed texture s3tc srgb, WEBGL compressed texture etci, WEBGL compressed texture es3,
WEBGL compressed texture astc, WEBGL compressed texture atc and WEBGL compressed texture pvrtc

Support:

e Apple OpenGL drivers don’t support BPTC
e Only Broadwell support ETC2 & EAC formats and Skylake support ASTC on desktop in hardware
e GL_COMPRESSED_RGBS_ETC2 and GL_ETC1_RGB8_OES are different enums that represent the same data

e NVIDIA GeForce and Tegra driver don’t list RGBA DXT1, sRGB DXT and RGTC formats and list ASTC formats and
palette formats that aren’t exposed as supported extensions

e AMD driver (13441) and Intel driver (4454) doesn’t list SRGB DXT, LATC and RGTC formats

o Intel driver (4474) doesn’t support ETC2 & EAC (even through decompression) on Haswell

https://www.opengl.org/registry/specs/ARB/texture_compression.txt
http://opengles.gpuinfo.org/gles_generatereport.php?reportID=887
http://opengles.gpuinfo.org/gles_generatereport.php?reportID=860
http://opengles.gpuinfo.org/gles_generatereport.php?reportID=908
https://www.opengl.org/registry/doc/glspec45.core.withchanges.pdf
https://www.khronos.org/registry/gles/specs/3.2/es_spec_3.2.withchanges.pdf
https://www.opengl.org/registry/specs/EXT/texture_compression_s3tc.txt
https://www.khronos.org/registry/gles/extensions/EXT/texture_compression_s3tc.txt
https://www.opengl.org/registry/specs/EXT/texture_compression_s3tc.txt
https://www.opengl.org/registry/specs/EXT/texture_sRGB.txt
https://www.khronos.org/registry/gles/extensions/NV/NV_sRGB_formats.txt
https://www.opengl.org/registry/specs/ARB/texture_compression_rgtc.txt
https://www.opengl.org/registry/specs/ARB/texture_compression_bptc.txt
https://www.opengl.org/registry/specs/ARB/ES3_compatibility.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_compressed_ETC1_RGB8_texture.txt
https://www.opengl.org/registry/specs/ARB/ES3_compatibility.txt
https://www.opengl.org/registry/specs/KHR/texture_compression_astc_hdr.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_texture_compression_astc.txt
https://www.khronos.org/registry/gles/extensions/KHR/texture_compression_astc_hdr.txt
https://www.khronos.org/registry/gles/extensions/KHR/texture_compression_astc_sliced_3d.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_texture_compression_astc.txt
https://www.khronos.org/registry/gles/extensions/AMD/AMD_compressed_ATC_texture.txt
https://www.khronos.org/registry/gles/extensions/IMG/IMG_texture_compression_pvrtc.txt
https://www.khronos.org/registry/gles/extensions/IMG/IMG_texture_compression_pvrtc2.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_pvrtc_sRGB.txt
https://www.khronos.org/registry/webgl/extensions/WEBGL_compressed_texture_s3tc/
https://www.khronos.org/registry/webgl/extensions/proposals/WEBGL_compressed_texture_s3tc_srgb/
https://www.khronos.org/registry/webgl/extensions/WEBGL_compressed_texture_etc1/
https://www.khronos.org/registry/webgl/extensions/WEBGL_compressed_texture_es3/
https://www.khronos.org/registry/webgl/extensions/WEBGL_compressed_texture_astc/
https://www.khronos.org/registry/webgl/extensions/WEBGL_compressed_texture_atc/
https://www.khronos.org/registry/webgl/extensions/WEBGL_compressed_texture_pvrtc/
https://en.wikipedia.org/wiki/Broadwell_(microarchitecture)
https://en.wikipedia.org/wiki/Skylake_(microarchitecture)
http://opengl.gpuinfo.org/gl_generatereport.php?reportID=1371
http://opengles.gpuinfo.org/gles_generatereport.php?reportID=911
https://www.khronos.org/registry/gles/extensions/OES/OES_compressed_paletted_texture.txt
http://opengl.gpuinfo.org/gl_generatereport.php?reportID=1365
http://opengl.gpuinfo.org/gl_generatereport.php?reportID=1361
http://opengl.gpuinfo.org/gl_generatereport.php?reportID=1366

Required texture formats are described section 8.5.1 of the OpenGL 4.5 and OpenGL ES 3.2 specifications. Unlike
compressed formats, there is no query to list them and it’s required to check both versions and extensions. To save
time, listing 12.1 summarizes the versions and extensions to check for each texture format.

Formats OpenGL OpenGL ES WebGL
GL_R8, GL_RG8 3.0, GL ARB texture rg 3.0, GL EXT texture rg 2.0
GL_RGB8, GL_RGBAS8 1.1 2.0 1.0
GL_SR8 N/A GL_EXT texture sRGB R8 N/A
GL_SRG8 N/A GL _EXT texture sRGB RG8 N/A
GL_SRGB8, GL_SRGB8_ALPHA8 3.0, GL EXT texture sRGB 3.0, GL EXT sRGB 2.0,

GL EXT sRGB
GL_R16, GL_RG16, GL_RGB16, 1.1 GL EXT texture norml6 N/A
GL_RGBA16,
GL_R8_SNORM, GL_RG8_SNORM, 3.0, GL EXT texture snorm 3.0, GL EXT render snorm 2.0
GL_RGBA8_SNORM
GL_RGB8_SNORM, 3.0, GL EXT texture snorm 3.0 2.0
GL_R16_SNORM, GL_RG16_SNORM, 3.0, GL EXT texture snorm GL _EXT render snorm,
GL_RGBA16_SNORM GL EXT texture normilé
GL_RGB16_SNORM 3.0, GL EXT texture snorm GL EXT texture norml6
GL_R8UI, GL_RG8UI, GL_R16UI, 3.0, GL ARB texture rg 3.0 2.0

GL_RG16UI, GL_R32UI, GL_RG32UI,

GL_R8I, GL_RG8I, GL_R16I,

GL_RG16I, GL_R32I, GL_RG32I

GL_RGB8UI, GL_RGBA8UI, GL_RGB16UI, 3.0, GL EXT texture integer 3.0 2.0
GL_RGBA16UI, GL_RGB32UI,

GL_RGBA32UI, GL_RGB8I, GL_RGBASI,

GL_RGB16I, GL_RGBA16I, GL_RGB32I,

GL_RGBA32I

GL_RGBA4, GL_R5G6B5, GL_RGB5A1l 1.1 2.0 1.0

GL_RGB10A2 1.1 3.0 2.0

GL_RGB10_A2UI 3.3, GL ARB texture rgbl@ a2ui 3.0 2.0

GL_R16F, GL_RG16F, GL_RGB16F, 3.0, GL ARB texture float 3.0, 2.0

GL_RGBA16F GL OES texture half float

GL_R32F, GL_RG32F, GL_RGB32F, 3.0, GL ARB texture float 3.0, 2.0

GL_RGBA32F GL OES texture float

GL_RGB9_E5 3.0, 3.0 2.0
GL EXT texture shared exponent

GL_R11F_G11F_B1@F 3.0, GL EXT packed float 3.0 2.0

GL_DEPTH_COMPONENT16 1.0 2.0 1.0

GL_DEPTH_COMPONENT24, 1.0 3.0 2.0

GL_DEPTH24 STENCILS

GL_DEPTH_COMPONENT32F, 3.9, GL ARB depth buffer float 3.0 2.0

GL_DEPTH32F_STENCIL8

GL_STENCILS 4.3, GL ARB texture stencil8 3.1 N/A

Listing 12.1: OpenGL versions and extensions to check for each texture format.
Many restrictions apply on texture formats: Multisampling support, mipmap generation, renderable, filtering mode, etc.

For multisampling support, a query was introduced in OpenGL ES 3.0 and then exposed in OpenGL 4.2 and
GL_ARB internalformat query. However, typically all these restrictions are listed in the OpenGL specifications directly.

To expose these limitations through queries, GL_ARB internalformat gquery2 was introduce with OpenGL 4.3.

A commonly used alternative to checking versions and extensions, consists in creating a texture and then calling
glGetError atthe beginning of the program to initialize a table of available texture formats. If the format is not supported,
then glGetError will return a GL_INVALID_ENUM error. However, OpenGL doesn’t guarantee the implementation behavior
after an error. Typically, implementations will just ignore the OpenGL command but an implementation could simply quit
the program. This is the behavior chosen by SwiftShader.

https://www.opengl.org/registry/doc/glspec45.core.withchanges.pdf
https://www.khronos.org/registry/gles/specs/3.2/es_spec_3.2.withchanges.pdf
https://www.opengl.org/registry/specs/ARB/texture_rg.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_rg.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_sRGB_R8.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_sRGB_RG8.txt
https://www.opengl.org/registry/specs/EXT/texture_sRGB.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_sRGB.txt
https://www.khronos.org/registry/webgl/extensions/EXT_sRGB/
https://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_norm16.txt
https://www.opengl.org/registry/specs/EXT/texture_snorm.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_render_snorm.txt
https://www.opengl.org/registry/specs/EXT/texture_snorm.txt
https://www.opengl.org/registry/specs/EXT/texture_snorm.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_render_snorm.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_norm16.txt
https://www.opengl.org/registry/specs/EXT/texture_snorm.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_norm16.txt
https://www.opengl.org/registry/specs/ARB/texture_rg.txt
https://www.opengl.org/registry/specs/EXT/texture_integer.txt
https://www.opengl.org/registry/specs/ARB/texture_rgb10_a2ui.txt
https://www.opengl.org/registry/specs/ARB/texture_float.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_texture_float.txt
https://www.opengl.org/registry/specs/ARB/texture_float.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_texture_float.txt
https://www.opengl.org/registry/specs/EXT/texture_shared_exponent.txt
https://www.opengl.org/registry/specs/EXT/packed_float.txt
https://www.opengl.org/registry/specs/ARB/depth_buffer_float.txt
https://www.opengl.org/registry/specs/ARB/texture_stencil8.txt
https://www.opengl.org/registry/specs/ARB/internalformat_query.txt
https://www.opengl.org/registry/specs/ARB/internalformat_query2.txt
https://swiftshader-review.googlesource.com/#/c/5770/

With GPU driven rendering, we typically need an ID to access per draw data just like instancing has with gl InstanceID.
With typically draw calls, we can use a default vertex attribute or a uniform. Unfortunately, neither is very efficient and
this is why Vulkan introduced push constants. However, GPU driven rendering thrives with multi draw indirect but default
attributes, uniforms or push constants can’t be used to provide an ID per draw of a multi draw call. For this purpose,
GL_ARB shader draw parameters extension introduced the gl DrawID where the first draw has the value 0, the second the
value 1, etc. Unfortunately, this functionality is only supported on AMD and NVIDIA GPUs since Southern Islands and Fermi
respectively. Furthermore, on implementation to date, gl_bDrawID doesn’t always provide the level of performance we
could expect...

A first native, and actually invalid, alternative consists in emulating the per-draw ID using a shader atomic counter. Using
a first vertex provoking convention, when gl_VertexID and gl_InstanceID are both O, the atomic counter is incremented
by one. Unfortunately, this idea is wrong due to the nature of GPU architectures so that OpenGL doesn't guarantee the
order of executions of shader invocations and atomics. As a result, we can't expect even expect that the first draw will be
identified with the value 0. On AMD hardware, we almost obtain the desired behavior but not 100% all the time. On
NVIDIA hardware atomic counters execute asynchronously which nearly guarantee that we will never get the behavior we
want.

Fortunately, there is a faster and more flexible method. This method leverages the computation of element of a vertex
attribute shown in listing 13.1.

floor(<gl_InstanceID> / <divisor>) + <baseinstance>
Listing 13.1: Computation of the element of a vertex array for a non-zero attribute divisor.

Using 1 has a value for divisor, we can use the <baseinstance> parameter as an offset in the DrawlID array buffer to provide
an arbitrary but deterministic brawID value per draw call. The setup of a vertex array object with one attribute used as per
draw identifier is shown in listing 13.2.

glGenVertexArrays(1, &VertexArrayName);
glBindVertexArray(VertexArrayName);

glBindBuffer(GL_ARRAY_BUFFER, BufferName[buffer::DRAW_ID]);
glVertexAttribIPointer(DRAW_ID, 1, GL_UNSIGNED_INT, sizeof(glm::uint), 0);
glVertexAttribDivisor(DRAW_ID, 1);

glEnableVertexAttribArray (DRAW_ID);

glBindBuffer (GL_ELEMENT_ARRAY_BUFFER, BufferName[buffer::ELEMENT]);

Listing 13.2: Creating a vertex array object with a DrawlID attribute

This functionality is a great fit for multi draw indirect but it also works fine with tight loops, providing an individual per
draw identifier per call without setting a single state.

Support:

e Baseinstance is an OpenGL 4.0 and GL_ARB base instance feature

e Base instance is available on GeForce 8, Radeon HD 2000 series and lvry Bridge
e Base instance is exposed on OpenGL ES through GL_EXT base instance

e Base instance is only exposed on mobile on Tegra SoCs since K1

http://on-demand.gputechconf.com/gtc/2016/presentation/s6138-christoph-kubisch-pierre-boudier-gpu-driven-rendering.pdf
https://www.opengl.org/sdk/docs/man/html/gl_InstanceID.xhtml
https://developer.nvidia.com/vulkan-shader-resource-binding
https://www.opengl.org/registry/specs/ARB/multi_draw_indirect.txt
https://www.opengl.org/registry/specs/ARB/shader_draw_parameters.txt
http://www.g-truc.net/post-0518.html
http://opengl.gpuinfo.org/gl_listreports.php?listreportsbyextension=GL_ARB_shader_draw_parameters
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/07/AMD_Southern_Islands_Instruction_Set_Architecture1.pdf
https://www.nvidia.fr/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://www.opengl.org/registry/specs/ARB/shader_atomic_counters.txt
https://www.opengl.org/sdk/docs/man/html/glProvokingVertex.xhtml
https://www.opengl.org/sdk/docs/man/html/gl_VertexID.xhtml
http://www.g-truc.net/post-0518.html
https://www.opengl.org/registry/specs/ARB/base_instance.txt
http://www.g-truc.net/doc/OpenGL%203%20Hardware%20Matrix.pdf
https://www.khronos.org/registry/gles/extensions/EXT/EXT_base_instance.txt
http://opengles.gpuinfo.org/gles_listreports.php?extension=GL_EXT_base_instance

A good old trick on immediate rendering GPUs (IMR) is to avoid clearing the colorbuffers when binding a framebuffer to
save bandwidth. Additionally, if some pixels haven’t been written during the rendering of the framebuffer, the rendering
of an environment cube map must take place last. The idea is to avoid writing pixels that will be overdraw anyway.
However, this trick can cost performance on tile based GPUs (TBR) where the rendering is performed on on-chip memory
which behaves as an intermediate buffer between the execution units and the graphics memory as shown in figure 14.1.

—| _| restore —|

ALU on-chip memory graphics memory

resolve

E——

Figure 14.1: Data flow on tile based GPUs.

On immediate rendering GPUs, clearing the framebuffer, we write in graphics memory. On tile based GPUs, we write in
on-chip memory. Replacing all the pixels by the clear color, we don’t have to restore the graphics memory into tile based
memory. To optimize further, we can simply invalidate the framebuffer to notify the driver that the data is not needed.

Additionally, we can control whether we want to save the data of a framebuffer into graphics memory. When we store
the content of a tile, we don’t only store the on-chip memory into the graphics memory, we also process the list of vertices
associated to the tile and perform the multisampling resolution. We call these operations a resolve.

The OpenGL/ES API allows controlling when the restore and resolve operations are performed as shown in listing 14.2.

void BindFramebuffer(GLuint FramebufferName, GLenum Target,
GLsizei NumResolve, GLenum Resolve[], GLsizei NumRestore, GLenum Restore[], bool ClearDepthStencil)

{

if(NumResolve > ©) // Control the attachments we want to flush from on-chip memory to graphics memory.
glInvalidateFramebuffer(Target, NumResolve, Resolve);

glBindFramebuffer(Target, FramebufferName);

if(NumRestore > @) // Control the attachments we want to fetch from graphics memory to on-chip memory.
glInvalidateFramebuffer(Target, NumRestore, Restore);

if(ClearDepthStencil && Target != GL_READ_FRAMEBUFFER)
glClear(GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);

Listing 14.2: Code sample showing how to control tile restore and resolve with the OpenGL/ES API

A design trick is to encapsulate glBindFramebuffer in a function with arguments that control restore and resolve to
guarantees that each time we bind a framebuffer, we consider the bandwidth consumption. These considerations should
also take place when calling swapBuffers functions.

We can partial invalidate a framebuffer, however, this is generally suboptimal as parameter memory can’t be freed. When
glInvalidateFramebuffer and glDiscardFramebufferEXT are not supported, glClear is a good fallback to control restore
but glInvalidateFramebuffer can be used all both IMR and TBR GPUs in a unique code path without performance issues.

Support:

e GL _EXT discard framebuffer extension is largely supported: Adreno 200, BayTrail, Mali 400, Mesa, PowerVR
SGX, Videocore IV and Vivante GC 800 and all ES3.0 devices

e glinvalidateFramebuffer is available on all ES 3.0 devices ; GL4.3 and GL_ARB_invalidate subdata including
GeForce 8, Radeon HD 5000, Intel Haswell devices

References:

e Performance Tuning for Tile-Based Architectures, Bruce Merry, 2012
e How to correctly handle framebuffers, Peter Harris, 2014

https://www.opengl.org/sdk/docs/man/html/glBindFramebuffer.xhtml
https://www.khronos.org/registry/egl/sdk/docs/man/html/eglSwapBuffers.xhtml
https://www.khronos.org/opengles/sdk/docs/man3/html/glInvalidateFramebuffer.xhtml
https://www.khronos.org/registry/gles/extensions/EXT/EXT_discard_framebuffer.txt
https://www.khronos.org/opengles/sdk/docs/man3/html/glClear.xhtml
https://www.khronos.org/opengles/sdk/docs/man3/html/glInvalidateFramebuffer.xhtml
http://opengles.gpuinfo.org/gles_listreports.php?extension=GL_EXT_discard_framebuffer
https://www.opengl.org/sdk/docs/man/html/glInvalidateFramebuffer.xhtml
http://opengl.gpuinfo.org/gl_listreports.php?listreportsbyextension=GL_ARB_invalidate_subdata
http://www.seas.upenn.edu/~pcozzi/OpenGLInsights/OpenGLInsights-TileBasedArchitectures.pdf
https://community.arm.com/groups/arm-mali-graphics/blog/2014/04/28/mali-graphics-performance-2-how-to-correctly-handle-framebuffers

It is often necessary to detect the renderer to workaround bugs or performance issues and more generally to define a
platform specific code path. For example, with PowerVR GPUs, we don’t have to sort opaque objects front to back. Listing
15.1 shows how to detect the most common renderers.

enum renderer {
RENDERER_UNKNOWN, RENDERER_ADRENO, RENDERER_GEFORCE, RENDERER_INTEL, RENDERER_MALI, RENDERER_POWERVR,
RENDERER_RADEON, RENDERER_VIDEOCORE, RENDERER_VIVANTE, RENDERER_WEBGL

b

renderer InitRenderer() {
char const* Renderer = reinterpret_cast<char const*>(glGetString(GL_RENDERER));
if(strstr(Renderer, "Tegra") || strstr(Renderer, "GeForce") || strstr(Renderer, "NV"))
return RENDERER_GEFORCE; // Mobile, Desktop, Mesa
else if(strstr(Renderer, "PowerVR") || strstr(Renderer, "Apple"))
return RENDERER_POWERVR; // Android, i0S PowerVR 6+
else if(strstr(Renderer, "Mali"))
return RENDERER_MALI;
else if(strstr(Renderer, "Adreno"))
return RENDERER_ADRENO;
else if(strstr(Renderer, "AMD") || strstr(Renderer, "ATI"))
return RENDERER_RADEON; // Mesa, Desktop, old drivers
else if(strstr(Renderer, "Intel"))
return RENDERER_INTEL; // Windows, Mesa, mobile
else if(strstr(Renderer, "Vivante"))
return RENDERER_VIVANTE;
else if(strstr(Renderer, "VideoCore"))
return RENDERER_VIDEOCORE;
else if(strstr(Renderer, "WebKit") || strstr(Renderer, "Mozilla") || strstr(Renderer, "ANGLE"))
return RENDERER_WEBGL; // WebGL
else return RENDERER_UNKNOWN;

Listing 15.1: Code example to detect the most common renderers

WebGL is a particular kind of renderer because it typically hides the actual device used because such information might
yield personally-identifiable information to the web page. WEBGL debug renderer info allows detecting the actual device.

The renderer is useful but often not enough to identify the cases to use a platform specific code path. Additionally, we can
rely on the OS versions, the OpenGL versions, the availability of extensions, compiler macros, etc.

GL_VERSION query may help for further accuracy as hardware vendor took the habit to store the driver version in this string.
However, this work only on resent desktop drivers (since 2014) and it requires a dedicated string parser per renderer. On
mobile, vendor generally only indicate the OpenGL ES version. However, since Android 6, it seems most vendors expose a
driver version including a source version control revision. This is at least the case of Mali, PowerVR and Qualcomm GPUs.

When building a driver bug workaround, it’s essential to write in the code a detail comment including the OS, vendor, GPU
and even the driver version. This workaround will remain for years, with many people working on the code. The comment
is necessary to be able to remove some technical debt when the specific platform is no longer supported and to avoid
breaking that platform in the meantime. Workarounds are typically hairy, hence, without a good warning, the temptation
is huge to just remove it.

On desktop, developers interested in very precise identification of a specific driver may use OS specific drivers detection.

Support:

o WEBGL debug renderer info is supported on Chrome, Chromium, Opera, IE and Edge

https://www.khronos.org/registry/webgl/extensions/WEBGL_debug_renderer_info/
https://github.com/g-truc/glm/blob/0.9.7/glm/simd/platform.h
https://www.opengl.org/sdk/docs/man/html/glGetString.xhtml
http://opengles.gpuinfo.org/gles_generatereport.php?reportID=842
http://opengles.gpuinfo.org/gles_generatereport.php?reportID=850
http://opengles.gpuinfo.org/gles_generatereport.php?reportID=949
https://msdn.microsoft.com/en-us/library/aa390423(v=vs.85).aspx
https://www.khronos.org/registry/webgl/extensions/WEBGL_debug_renderer_info/

Texture

OpenGL ES 2.0 (spec, practice)
OpenGL ES 3.0 (spec, practice)
OpenGL ES 3.1 (spec, practice)
OpenGL 2.x (spec, practice)
OpenGL 3.x (spec, practice)
OpenGL 4.x (spec, practice)

PowerVR
Series 5
Series 5XT
Series 6

Adreno

200 series
300 series
400 series
500 series

Mali
400 - 450 series
600 - 800 series

Videocore
v

Vivante
GC*000

Intel

GMA

Sandy Bridge
BayTrail
Haswell

GeForce
Tegra2-3
Tegra 4

5, 6, 7 series

8 series - Tesla

400 series - Fermi / Tegra K1
1000 series - Pascal

Radeon

X000 series
HD 2 series
HD 5 series

2D
64,2048
2048, 4096
2048, 8192
64,2048
1024, 8192
16384,

2D

2048
4096
8192

2D
4096
4096
16384
16384

2D
4096
8192

2D
2048

2D
8192

2D
4096
8192
8192
16384

2D
2048
4096
4096
8192
16384
32768

2D
2048
8192
16384

Cubemap
N/A / N/A
2048, 4096
2048, 4096
16, 2048
1024, 8192
16384

Cubemap
N/A

N/A

8192

Cubemap
N/A

4096
16384
16384

Cubemap
N/A
8192

Cubemap
N/A

Cubemap
8192

Cubemap
2048
8192
8192
16384

Cubemap
2048
4096
4096
8192
16384
32768

Cubemap
2048
8192
16384

3D

N/A / N/A
256, 1024
256, 2048
16, 128
256, 2048
2048

3D
N/A
N/A
2048

3D

1024
1024
2048
2048

3D
N/A
4096

3D
N/A

3D
8192

3D
128
2048
2048
2048

3D
N/A
N/A
512
2048
2048
16384

3D

2048
8192
2048

Array layers
N/A / N/A
256, 256
256, 256
N/A, N/A
256, 2048
2048, 2048

Array layers
N/A

N/A

2048

Array layers
N/A

256

2048

2048

Array layers
N/A
2048

Array layers
N/A

Array layers
512

Array layers
N/A

2048

2048

2048

Array layers
N/A

N/A

N/A

2048

2048

2048

Array layers
N/A

8192

2048

Renderbuffer
N/A, 2048
2048, 8192
2048, 8192
N/A, 2048
1024, 4096
16384, 16384

Renderbuffer
4096
8192
8192

Renderbuffer
4096
4096
8192
8192

Renderbuffer
4096
8192

Renderbuffer
2048

Renderbuffer
8192

Renderbuffer
2048

4096

8192

16384

Renderbuffer
3839

4096

4096

8192

16384

32768

Renderbuffer
2048

8192

16384

On the desktop environments, the texture compression landscape is well established: OpenGL 2.x hardware supports S3TC
(BC1 - DXT; BC2 - DXT3; BC3 - DXT5); OpenGL 3.x hardware supports RGTC (BC4 and BC5); and OpenGL 4.x hardware
supports BPTC (BC6H - BC7). The only caveat is that macOS OpenGL drivers don’t expose BPTC formats...

On the mobile environments, the texture compression landscape is at the image of fragmentation of the mobile
ecosystem. The original offender, S3TC became the subject of a patent troll that prevented S3TC from mobile adoption.
As a result, everyone came up with their own formats: ATC, ETC1, PVRTC but it took until OpenGL ES 3.0 for the landscape
to simplify with the creation and adoption of a new standard: ETC2.

Formats
DXT1; BC1
DXT3; BC2
DXT5; BC3
BC4; RGTC1

BC5; RGTC2

BC6H

BC/

ETC, RGB ETC2

RGBA ETC2

R11 EAC

RG11 EAC

ASTC LDR

ASTCHDR

ASTC 3D

PVRTC1 4BPP
PVRTC1 2BPP
PVRTC2 4BPP
PVRTC2 2BPP
ATC

Description

Unorm RGB 4 bits per pixels

Unorm RGBAS 8 bits per pixels
Unorm RGBAS 8 bits per pixels
Unorm and snorm R 4 bits per pixels

Unorm and snorm RG 8 bits per pixels
Ufloat and sfloat RGB 8 bits per pixels
Unorm RGBA 8 bits per pixels

Unorm RGB 4 bits per pixels

Unorm RGBA 8 bits per pixels

Unorm and snorm, R 4 bits per pixels
Unorm and snorm, R 8 bits per pixels

Unorm RGBA variable block size compression. Eg:
12x12: 0.89 bits per pixels; 8x8: 2bits per pixels;
4x4: 8 bits per pixels

Sfloat RGBA variable block size. Eg: 12x12: 0.89
bits per pixels; 8x8: 2bits per pixels; 4x4: 8 bits
per pixels

3D RGBA variable block size. Eg: 3x3x3: 4.47 bit
per pixels; 6x6x6: 0.59 bit per pixels.

Unorm RGB and RGBA 4 BPP

Unorm RGB and RGBA 2 BPP

Unorm RGB and RGBA 4 BPP

Unorm RGB and RGBA 2 BPP

RGB and RGBA, 4 bits and 8 bits per pixels

Table 17.1: List of available formats and hardware support.

Hardware support

GeForce, Intel, Radeon, Tegra

GeForce, Intel, Radeon, Tegra

GeForce, Intel, Radeon, Tegra

GeForce 8, Intel Sandy Bridge, Radeon HD

2000, Tegra
GeForce 8, Intel Sandy Bridge, Radeon HD

2000, Tegra
GeForce 400, Intel Ivry Bridge; Radeon HD

5000, Tegra
GeForce 400, Intel Ivry Bridge; Radeon HD

5000, Tegra

Adreno 200; Intel BayTrail; GC100; Mali 400;
PowerVR 5; Tegra 3; VideoCore IV
Adreno 300; Intel BayTrail; GC1000; Mali
T600; PowerVR 6; Tegra K1

Adreno 300; Intel BayTrail; GC1000; Mali
T600; PowerVR 6; Tegra K1

Adreno 300; Intel BayTrail; GC1000; Mali
T600; PowerVR 6; Tegra K1

Adreno 306 —400; Intel Broadwell; Mali
T600; PowerVR 6XT; Tegra K1

Adreno 500; Mali T600; Intel Skylake

Adreno 500; Mali T600

PowerVR 5
PowerVR 5
PowerVR 5XT
PowerVR 5XT
Adreno 200

Unfortunately, to date (August 2018), there is still 40% of the devices only capable of OpenGL ES 2.0 support. Hence, we
typically need to ship applications with different assets. As a result, Google Play allows publishing multiple Android APKs
so that mobile that requires specific compression formats get the right assets.

https://www.khronos.org/registry/dataformat/specs/1.1/dataformat.1.1.html#_bc1_with_no_alpha
http://opengl.gpuinfo.org/gl_listreports.php?listreportsbyextension=GL_EXT_texture_compression_s3tc
https://www.khronos.org/registry/dataformat/specs/1.1/dataformat.1.1.html#_bc3
http://opengl.gpuinfo.org/gl_listreports.php?listreportsbyextension=GL_EXT_texture_compression_s3tc
https://www.khronos.org/registry/dataformat/specs/1.1/dataformat.1.1.html#_bc3
http://opengl.gpuinfo.org/gl_listreports.php?listreportsbyextension=GL_EXT_texture_compression_s3tc
https://www.khronos.org/registry/dataformat/specs/1.1/dataformat.1.1.html#RGTC
http://opengl.gpuinfo.org/gl_listreports.php?listreportsbyextension=GL_ARB_texture_compression_rgtc
http://opengl.gpuinfo.org/gl_listreports.php?listreportsbyextension=GL_ARB_texture_compression_rgtc
https://www.khronos.org/registry/dataformat/specs/1.1/dataformat.1.1.html#RGTC
http://opengl.gpuinfo.org/gl_listreports.php?listreportsbyextension=GL_ARB_texture_compression_rgtc
http://opengl.gpuinfo.org/gl_listreports.php?listreportsbyextension=GL_ARB_texture_compression_rgtc
https://www.khronos.org/registry/dataformat/specs/1.1/dataformat.1.1.html#_bc6h
http://opengl.gpuinfo.org/gl_listreports.php?listreportsbyextension=GL_ARB_texture_compression_bptc
http://opengl.gpuinfo.org/gl_listreports.php?listreportsbyextension=GL_ARB_texture_compression_bptc
https://www.khronos.org/registry/dataformat/specs/1.1/dataformat.1.1.html#_bc3
http://opengl.gpuinfo.org/gl_listreports.php?listreportsbyextension=GL_ARB_texture_compression_bptc
http://opengl.gpuinfo.org/gl_listreports.php?listreportsbyextension=GL_ARB_texture_compression_bptc
https://www.khronos.org/registry/dataformat/specs/1.1/dataformat.1.1.html#ETC1
https://www.khronos.org/registry/dataformat/specs/1.1/dataformat.1.1.html#RGBETC2
http://opengles.gpuinfo.org/gles_listreports.php?extension=GL_OES_compressed_ETC1_RGB8_texture
http://opengles.gpuinfo.org/gles_listreports.php?extension=GL_OES_compressed_ETC1_RGB8_texture
https://www.khronos.org/registry/dataformat/specs/1.1/dataformat.1.1.html#_format_rgba_etc2
https://www.khronos.org/registry/dataformat/specs/1.1/dataformat.1.1.html#Section-r11eac
https://www.khronos.org/registry/dataformat/specs/1.1/dataformat.1.1.html#_format_unsigned_rg11_eac
https://www.khronos.org/registry/dataformat/specs/1.1/dataformat.1.1.html#ASTC
http://opengles.gpuinfo.org/gles_listreports.php?extension=GL_KHR_texture_compression_astc_ldr
http://opengles.gpuinfo.org/gles_listreports.php?extension=GL_KHR_texture_compression_astc_ldr
http://opengles.gpuinfo.org/gles_listreports.php?extension=GL_KHR_texture_compression_astc_ldr
http://opengles.gpuinfo.org/gles_listreports.php?extension=GL_OES_texture_compression_astc
https://www.google.fr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0ahUKEwjZzozNgLrOAhVBmBoKHd7GAVoQFggwMAM&url=https%3A%2F%2Fwww.khronos.org%2Fregistry%2Fgles%2Fextensions%2FIMG%2FIMG_texture_compression_pvrtc.txt&usg=AFQjCNFfqCnClx_LwzYKLTiPV__gGtycdg&sig2=6RMxQRZ8ydZ2dnCkGzwWlA&bvm=bv.129422649,d.d2s
http://opengles.gpuinfo.org/gles_listreports.php?extension=GL_IMG_texture_compression_pvrtc
https://www.google.fr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0ahUKEwjZzozNgLrOAhVBmBoKHd7GAVoQFggwMAM&url=https%3A%2F%2Fwww.khronos.org%2Fregistry%2Fgles%2Fextensions%2FIMG%2FIMG_texture_compression_pvrtc.txt&usg=AFQjCNFfqCnClx_LwzYKLTiPV__gGtycdg&sig2=6RMxQRZ8ydZ2dnCkGzwWlA&bvm=bv.129422649,d.d2s
http://opengles.gpuinfo.org/gles_listreports.php?extension=GL_IMG_texture_compression_pvrtc
https://www.khronos.org/registry/gles/extensions/IMG/IMG_texture_compression_pvrtc2.txt
http://opengles.gpuinfo.org/gles_listreports.php?extension=GL_IMG_texture_compression_pvrtc2
https://www.khronos.org/registry/gles/extensions/IMG/IMG_texture_compression_pvrtc2.txt
http://opengles.gpuinfo.org/gles_listreports.php?extension=GL_IMG_texture_compression_pvrtc2
https://www.khronos.org/registry/gles/extensions/AMD/AMD_compressed_ATC_texture.txt
http://opengles.gpuinfo.org/gles_listreports.php?extension=GL_AMD_compressed_ATC_texture
http://hwstats.unity3d.com/mobile/gpu.html
https://developer.android.com/google/play/publishing/multiple-apks.html

OpenGL 1.0 introduced glbrawBuffer entry point to select whether we want to render in the back buffer or the front
buffer for double and single buffering but also left of right buffer for stereo-rendering. Effectively, glbrawBuffer control
the default framebuffer destination.

With GL_EXT_framebuffer_object, promoted into GL_ARB_framebuffer_object and finally OpenGL 3.0, glDrawBuffers was
introduced for multiple framebuffer attachments. glbrawBuffer may be used for a framebuffer attachment but the bound
framebuffer must be a framebuffer object.

With OpenGL ES, glbrawBuffers was introduced in OpenGL ES 3.0 but glbrawBuffer remains not available as glbrawBuffers
is used as a superset of glbrawBuffer. Unfortunately, this is not the case with OpenGL core where glbrawBuffers was
originally designed exclusively for framebuffer objects. This behavior changed with OpenGL 4.5 and
GL ARB ES3 1 compatibility to follow the behavior of OpenGL ES, allowing glbrawBuffers with the default framebuffer.

Listing 18.1 shows example of the different approaches to initialize the draw buffers across API versions.

// OpenGL 3.0
glBindFramebuffer (GL_DRAW_FRAMEBUFFER, ©);
glDrawBuffer(GL_BACK);

// OpenGL 3.0
glBindFramebuffer (GL_DRAW_FRAMEBUFFER, FramebufferA);
glDrawBuffer(GL_COLOR_ATTACHMENT®);

// OpenGL ES 3.0 ; OpenGL 3.0
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, FramebufferB);
GLenum const Attachments = {GL_COLOR_ATTACHMENT®};
glDrawBuffers(1, &Attachments);

// OpenGL ES 3.0 ; OpenGL 3.0

glBindFramebuffer (GL_DRAW_FRAMEBUFFER, FramebufferC);

GLenum const Attachments[] = {GL_COLOR_ATTACHMENTO, GL_COLOR_ATTACHMENT1};
glDrawBuffers(2, &Attachments);

// OpenGL ES 3.0 ; OpenGL 4.5

glBindFramebuffer(GL_DRAW_FRAMEBUFFER, ©);

GLenum const Attachments[] = GL_BACK;

glDrawBuffers(1l, Attachments);

Listing 18.1: Initializing draw buffer states for default framebuffer (0) and framebuffer objects.

When rendering into a depth only framebuffer, OpenGL requires to use glbrawBuffer(GL_NONE). This restriction is not
present in OpenGL ES 3.0 and was lifted by OpenGL 4.1 and GL_ARB _ES2 compatibility as shown in listing 18.2.

// OpenGL ES 2.0 ; OpenGL 3.0
glBindFramebuffer(GL_FRAMEBUFFER, Framebuffer);
glFramebufferTexture(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, Texture, 0);
if(Api >= GL30 && Api < GL41)

glDrawBuffer (GL_NONE);
Listing 18.2: Initializing a framebuffer without color attachment.

Support:

e Adreno, GeForce, HG Graphics, PowerVR, Radeon GPUs support 8 draw buffers
e Apple drivers on PowerVR, Mali, Videocore, Vivante only supports 4 draw buffers

Reference:

e Implementing Stereoscopic 3D in Your Applications, Steve Nash, 2010

https://www.opengl.org/registry/specs/ARB/ES3_1_compatibility.txt
https://www.opengl.org/registry/specs/ARB/ES2_compatibility.txt
http://www.nvidia.com/content/gtc-2010/pdfs/2010_gtc2010.pdf

While Android OpenGL ES support is covered by opengles.gpuinfo.org, iOS support only benefit of a sparse proprietary

documentation with few mistakes. This section list the OpenGL ES 2.0 and 3.0 extensions supported by iOS releases and

GPUs.

iOS OpenGL ES features
KHR texture compression astc ldr

APPLE clip distance APPLE texture packed float
APPLE color buffer packed float

OpenGL ES 3.0

EXT sRGB EXT pvrtc sRGB

EXT draw instanced EXT instanced arrays

MAX_VERTEX_TEXTURE_IMAGE_UNITS > ©

APPLE copy texture levels APPLE sync

EXT texture storage EXT map buffer range
EXT shader framebuffer fetch

EXT discard framebuffer

EXT color buffer half float

EXT occlusion query boolean

EXT shadow samplers EXT texture rg

OES texture half float linear

APPLE color buffer packed float

APPLE texture packed float

OpenGL ES 2.0 IMG texture compression pvrtc
EXT debug label, EXT debug marker,

EXT shader texture lod EXT separate shader objects

OES texture float OES texture half float

OES element index uint

APPLE rgb 422 APPLE framebuffer multisample
APPLE texture format BGRA8888

APPLE texture max level EXT read format bgra
OES vertex array object OES depth texture
EXT blend minmax OES fbo render mipmap

OES standard derivatives OES packed depth stencil

OES rgb8 rgba8 OES depth24 OES mapbuffer
IMG read format EXT texture filter anisotropic

Reference:

e Unity iOS Hardware Stats

ios
8.0

8.0
7.0
7.0
7.0
7.0

6.0

5.0

5.0

4.0

3.1
3.0

2.0

Devices

iPhone 6, iPad Pro

iPhone 4s, iPod Touch 5,
iPad 2, iPad Mini 1
iPhone 5s, iPad Air, iPad
Mini 2, iPod Touch 6
iPhone 4s, iPod Touch 5,
iPad 2, iPad Mini 1
iPhone 3Gs, iPod Touch 3,
iPad 1

iPhone 3Gs, iPod Touch 3,
iPad 1

iPhone 3Gs, iPod Touch 3,
iPad 1

iPhone 4s, iPod Touch 5,
iPad 2, iPad Mini 1

iPhone 3Gs, iPod Touch 5,
iPad 2, iPad mini

iPhone 3Gs, iPod Touch 3,
iPad 1

iPhone 3Gs, iPod Touch 3,
iPad 1
iPhone 3Gs, iPod Touch 3,
iPad 1
iPhone 3Gs, iPod Touch 3,
iPad 1

GPUs
PowerVR 6XT -
A8

PowerVR 543
PowerVR 6 - A7
PowerVR 543
and 554
PowerVR 535
PowerVR 535

PowerVR 535

PowerVR 543
and 554

PowerVR 535

PowerVR 535

PowerVR 535

PowerVR 535

PowerVR 535

https://developer.apple.com/library/prerelease/content/documentation/3DDrawing/Conceptual/OpenGLES_ProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/3DDrawing/Conceptual/OpenGLES_ProgrammingGuide/AdoptingOpenGLES3/AdoptingOpenGLES3.html
https://developer.apple.com/library/ios/releasenotes/General/WhatsNewIniOS/Introduction/Introduction.html#//apple_ref/doc/uid/TP40008244-SW1
https://developer.apple.com/library/ios/documentation/DeviceInformation/Reference/iOSDeviceCompatibility/OpenGLESPlatforms/OpenGLESPlatforms.html
https://www.khronos.org/registry/gles/extensions/OES/OES_texture_compression_astc.txt
https://www.khronos.org/registry/gles/extensions/APPLE/APPLE_clip_distance.txt
https://www.khronos.org/registry/gles/extensions/APPLE/APPLE_texture_packed_float.txt
https://www.khronos.org/registry/gles/extensions/APPLE/APPLE_color_buffer_packed_float.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_sRGB.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_pvrtc_sRGB.txt
http://www.khronos.org/registry/gles/extensions/EXT/draw_instanced.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_instanced_arrays.txt
http://www.khronos.org/registry/gles/extensions/APPLE/APPLE_copy_texture_levels.txt
http://www.khronos.org/registry/gles/extensions/APPLE/APPLE_sync.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_storage.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_map_buffer_range.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_shader_framebuffer_fetch.txthttp:/www.khronos.org/registry/gles/extensions/EXT/EXT_shader_framebuffer_fetch.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_discard_framebuffer.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_color_buffer_half_float.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_occlusion_query_boolean.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_shadow_samplers.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_rg.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_texture_float_linear.txt
https://www.khronos.org/registry/gles/extensions/APPLE/APPLE_color_buffer_packed_float.txt
https://www.khronos.org/registry/gles/extensions/APPLE/APPLE_texture_packed_float.txt
https://www.khronos.org/registry/gles/extensions/IMG/IMG_texture_compression_pvrtc.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_debug_label.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_debug_marker.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_shader_texture_lod.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_separate_shader_objects.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_texture_float.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_texture_float.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_element_index_uint.txt
https://www.khronos.org/registry/gles/extensions/APPLE/rgb_422.txt
https://www.khronos.org/registry/gles/extensions/APPLE/APPLE_framebuffer_multisample.txt
https://www.khronos.org/registry/gles/extensions/APPLE/APPLE_texture_format_BGRA8888.txt
https://www.khronos.org/registry/gles/extensions/APPLE/APPLE_texture_max_level.txthttp:/www.khronos.org/registry/gles/extensions/APPLE/APPLE_texture_max_level.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_read_format_bgra.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_vertex_array_object.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_depth_texture.txt
http://www.opengl.org/registry/specs/EXT/blend_minmax.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_fbo_render_mipmap.txthttp:/www.khronos.org/registry/gles/extensions/OES/OES_fbo_render_mipmap.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_standard_derivatives.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_packed_depth_stencil.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_rgb8_rgba8.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_depth24.txt
https://www.khronos.org/registry/gles/extensions/OES/OES_mapbuffer.txt
https://www.khronos.org/registry/gles/extensions/IMG/IMG_read_format.txt
https://www.khronos.org/registry/gles/extensions/EXT/texture_filter_anisotropic.txt
http://hwstats.unity3d.com/mobile/gpu-ios.html

Asynchronous memory transfer allows copying data from device memory to client memory without waiting on the
completion of transfer command. It requires a fence and a pixel buffer object as listing 20.1.

glBindBuffer(GL_PIXEL_PACK_BUFFER, TransferFBO->Buffer);
glReadBuffer(GL_COLOR_ATTACHMENTO);

glReadPixels(@, @, Width, Height, GL_RGBA, GL_UNSIGNED_BYTE, 0);
TransferFBO->Fence = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, ©);

Listing 20.1: Asynchronous transfers of pixel data directly to driver side client memory

Alternatively, we can rely on a staging copy buffer to linearize the memory layout before the transfer (listing 20.2).

glBindBuffer(GL_PIXEL_PACK_BUFFER, TransferFBO->Buffer);
glReadBuffer(GL_COLOR_ATTACHMENTO);

glReadPixels(@, @, Width, Height, GL_RGBA, GL_UNSIGNED_ BYTE, ©);
glBindBuffer (GL_COPY_READ_BUFFER, TransferFBO->Buffer);
glBindBuffer(GL_COPY_WRITE_BUFFER, TransferFBO->Stagging);
glCopyBuffersubData(GL_COPY_READ_BUFFER, GL_COPY_WRITE_BUFFER, @, @, Size);
TransferFBO->Fence = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, ©0);

Listing 20.2: Asynchronous transfers of pixel data through staging buffer memory

While we can use glBufferData for asynchronous transfer,
ARB_buffer_storage introduced an explicit API that provides Pixel transfers: relative FPS to sync transfer
slightly better performance. 400%

300%

The joined chart shows performance tests showing relative FPS 200%

to a synchronize transfer using the approach in listing 20.1

. . L. . 100%
(async client transfer) and in listing 20.2 (async staging 0% —
transfer) using buffer _storage |r.1 both cases. AMD drivers seem Sync Async client Async staging
to perform some magic even with buffer storage as both async transfer transfer
client and staging perform identically. Performance on Intel
may be explain by the lack of GDDR memory.

B HG Graphics 4600 M Radeon R9 290X M GeForce GTX 970
Indeed, it is not enough to use a pixel buffer and create a fence, we need to query that the transfer has completed before
mapping the buffer so avoid a wait as shown in listing 20.3.

GLint Status = 0; GLsizei Length = 0;
glGetSynciv(Transfer->Fence, GL_SYNC_STATUS, sizeof(Status), &Length, &Status);

if (Status == GL_SIGNALED)

{
glDeleteSync(Transfer->Fence); // We no long need the fence once it was signaled
glBindBuffer(GL_COPY_WRITE_BUFFER, Transfer->Stagging);
void* Data = glMapBufferRange(GL_COPY_WRITE_BUFFER, ©, 640 * 480 * 4, GL_MAP_READ_BIT);
}

Listing 20.3: Asynchronous transfers of pixel data through staging buffer memory

Support:

e Pixel buffer is supported by WebGL 2.0, OpenGL ES 3.0, OpenGL 2.1 and ARB pixel buffer object
e Copy buffer is supported by WebGL 2.0, OpenGL ES 3.0, OpenGL 3.1 and ARB_copy buffer
o Buffer storage is supported by OpenGL 4.4, ARB_buffer storage and EXT buffer storage for OpenGL ES

Reference:

e Code samples for async client transfer and staging transfer with buffer storage
e Code samples for async client transfer and staging transfer with buffer data

https://github.com/g-truc/ogl-samples/blob/4.5.4/tests/gl-440-fbo-readpixels-async.cpp
https://github.com/g-truc/ogl-samples/blob/4.5.4/tests/gl-440-fbo-readpixels-staging.cpp
https://github.com/g-truc/ogl-samples/blob/4.5.4/tests/gl-440-fbo-readpixels-staging.cpp
https://www.opengl.org/registry/specs/ARB/pixel_buffer_object.txt
https://www.opengl.org/registry/specs/ARB/copy_buffer.txt
https://www.opengl.org/registry/specs/ARB/buffer_storage.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_buffer_storage.txt
https://github.com/g-truc/ogl-samples/tree/4.5.4
https://github.com/g-truc/ogl-samples/blob/4.5.4/tests/gl-440-fbo-readpixels-async.cpp
https://github.com/g-truc/ogl-samples/blob/4.5.4/tests/gl-440-fbo-readpixels-staging.cpp
https://github.com/g-truc/ogl-samples/tree/4.5.4
https://github.com/g-truc/ogl-samples/blob/4.5.4/tests/gl-320-fbo-readpixels-async.cpp
https://github.com/g-truc/ogl-samples/blob/4.5.4/tests/gl-320-fbo-readpixels-staging.cpp

2016-09-05

- Added item 20: Asynchronous pixel transfers

2016-08-31
- Added item 19: i0OS OpenGL ES extensions

2016-08-29

- Added item 18: Draw buffers differences between APIs
2016-08-13
- Added item 16: Max texture sizes

- Added item 17: Hardware compression format support

2016-08-03

- Added item 14: Cross architecture control of framebuffer restore and resolve to save bandwidth

- Added item 15: Building platform specific code paths

2016-07-22
- Added item 13: Surviving without gl_DrawID

2016-07-18

- Updated item 0: More details on platform ownership

2016-07-17

- Added item 11. Compressed texture internal format
- Added item 12. Sized texture internal format

2016-07-11

- Updated item 7: Report AMD bug: texelFetch[Offset] missing SRGB conversions
- Added item 10: sRGB framebuffer blending precision

2016-06-28

- Added item 0: Cross platform support

- Added item 7: sRGB textures

- Added item 8: sRGB framebuffer objects
- Added item 9: sRGB default framebuffer

2016-06-12

Added item 1: Internal texture formats

Added item 2: Configurable texture swizzling

Added item 3: BGRA texture swizzling using texture formats
Added item 4: Texture alpha swizzling

- Added item 5: Half type constants
- Added item 6: Color read format queries

